Publications by authors named "Elyssa Bernfeld"

Cancer cells consume glutamine, a nonessential amino acid (NEAA), at exceedingly high rates to fulfill their energetic and biosynthetic requirements for proliferation. Glutamine plays distinct roles from essential amino acids in cell cycle progression and in the activation of mammalian target of rapamycin (mTOR). Furthermore, the need of cancer cells for glutamine can be exploited therapeutically - especially those driven by KRas.

View Article and Find Full Text PDF

Glutamine is a key nutrient required for sustaining cell proliferation, contributing to nucleotide, protein, and lipid synthesis. The mTOR complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. Although glutamine plays an important role in mTORC1 activation, the mechanism is not clear.

View Article and Find Full Text PDF

mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the synthesis of PA, a central metabolite for membrane phospholipid biosynthesis.

View Article and Find Full Text PDF

During G1-phase of the cell cycle, normal cells respond first to growth factors that indicate that it is appropriate to divide and then later in G1 to the presence of nutrients that indicate sufficient raw material to generate two daughter cells. Dividing cells rely on the "conditionally essential" amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates and as a nitrogen source for nucleotide biosynthesis. We previously reported that while non-transformed cells arrest in the latter portion of G1 upon Q deprivation, mutant KRas-driven cancer cells bypass the G1 checkpoint, and instead, arrest in S-phase.

View Article and Find Full Text PDF