Mu opioid receptors in the nucleus accumbens regulate motivated behavior, including pursuit of natural rewards like social interaction as well as exogenous opioids. We used a suite of genetic and viral strategies to conditionally delete mu opioid receptor expression from all major neuron types in the nucleus accumbens. We pinpoint inhibitory interneurons as an essential site of mu opioid receptor expression for typical social behavior, independent from exogenous opioid sensitivity.
View Article and Find Full Text PDFOpioid exposure and withdrawal both cause adaptations in brain circuits that may contribute to abuse liability. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological impact. In this study, we compared cellular and synaptic adaptations in the nucleus accumbens shell caused by morphine exposure that was either continuous or interrupted by daily bouts of naloxone-precipitated withdrawal.
View Article and Find Full Text PDF