Publications by authors named "Elyse M Feder"

Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC) technology has revolutionized the field of biology through the unprecedented ability to study the differentiation of human cells in vitro. In the past decade, hPSCs have been applied to study development, model disease, develop drugs, and devise cell replacement therapies for numerous biological systems. Of particular interest is the application of this technology to study and treat optic neuropathies such as glaucoma.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation.

View Article and Find Full Text PDF