Macrophages are innate immune cells that are known for their extreme plasticity, enabling diverse phenotypes that lie on a continuum. In a simplified model, they switch between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes depending on surrounding microenvironmental cues, which have been implicated in disease outcomes. Although considerable research has been focused on macrophage response to biochemical cues and mechanical signals, there is a scarcity of knowledge surrounding their behavior in response to shear stress.
View Article and Find Full Text PDFTissue Eng Part C Methods
August 2023
The heart contains diverse endothelial cell types. We sought to characterize the endocardial endothelial cells (EECs), which line the chambers of the heart. EECs are relatively understudied, yet their dysregulation can lead to various cardiac pathologies.
View Article and Find Full Text PDFCongenital heart disease (CHD) poses a significant global health and economic burden-despite advances in treating CHD reducing the mortality risk, globally CHD accounts for approximately 300,000 deaths yearly. Children with CHD experience both acute and chronic cardiac complications, and though treatment options have improved, some remain extremely invasive. A challenge in addressing these morbidity and mortality risks is that little is known regarding the cause of many CHDs and current evidence suggests a multifactorial etiology.
View Article and Find Full Text PDFFront Cardiovasc Med
July 2021
Children with acquired heart disease face significant health challenges, including a lifetime of strict medical management, multiple cardiac surgeries, and a high mortality risk. Though the presentation of these conditions is diverse, a unifying factor is the role of immune and inflammatory responses in their development and/or progression. For example, infectious agents have been linked to pediatric cardiovascular disease, leading to a large health burden that disproportionately affects low-income areas.
View Article and Find Full Text PDFBackground: Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis.
View Article and Find Full Text PDF