Developing isothermal bio-analyzers for amplified detection of multi-factor diseases like cancer biomarkers (nucleic acid and protein) has facilitated the early diagnosis and clinical theranostics. In light of that, a sensitive detection system was developed assisted by the recognition capability of a functional aptamer followed by cyclic self-assembly of three auxiliary hairpins via branched hybridization chain reaction (b-HCR) performance. In the downstream process, in the presence of hemin, split sequences of a DNAzyme brought in close proximity to facilitate the color alteration of the solution to a green appearance.
View Article and Find Full Text PDFAs a novel cause of pneumonia, coronavirus disease 2019 (COVID-19) has rapidly progressed worldwide. Previous studies have indicated COVID-19 patients with diabetes show higher mortality rates and more severe COVID-19 infection with an increased requirement for intensive care and hospital length of stay (LOS) compared to non-diabetic patients. The present study aimed to investigate the association of diabetes and COVID-19 outcome with severity of disease in hospitalized patients.
View Article and Find Full Text PDFAccording to aptamer-mediated hairpin DNA cascade amplifier and gold nanoparticles aggregation, an optical platform for cancer cells determination has been proposed. High-affinity chimeric aptamers were used for cancer cell detection and also as an initiator for beginning hairpin assembly to construct three-way junction (3WJ) nanostructures. These three hairpins were modified at 3' ends with biotin.
View Article and Find Full Text PDFFluctuation of nucleic acid expression and ultrasensitive and specific detection of these variations in expression is a crucial subject in molecular medicine and clinical theranostics. A novel DNAzyme-coupled branched hybridization chain reaction (b-HCR) assay is reported for efficient signal-amplified detection of miRNA in this study. This assay was composed of a translator (T) hybridized with miR-21 to initiate the first HCR by hairpin 1 (H) and hairpin 2 (H).
View Article and Find Full Text PDFBiosens Bioelectron
October 2018
With the great advances in DNA nanotechnology, scientists have shown interest in developing dynamic nanostructures for theranostic applications, analyte sensing and cargo delivery. Here, we present a specific enzyme-free ultrasensitive platform based on a multilayer coupled signal amplification strategy to quantify miR-21 molecule. The biosensor was integrated based on three signal amplification gadgets, namely a translator-mediated catalytic hairpin assembly (CHA), a multilayer DNA concatemer on the surface of gold decorated magnetic nanoparticle (GMNP), and a DNAzyme-mediated catalytic signal amplification.
View Article and Find Full Text PDFThe development of powerful techniques to detect cancer cells at early stages plays a notable role in diagnosing and prognosing cancer patients and reducing mortality. This paper reports on a novel functional DNA nanoassembly capable of detecting cancer cells based on structural DNA nanotechnology. DNA nanoassemblies were constructed by the self-assembly of a DNA concatemer to a plenty of sticky-ended three-way junctions.
View Article and Find Full Text PDF