Background: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation.
Methods: We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated by patch-clamp recordings and optical mapping.
Background: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved through culture on polydimethylsiloxane (PDMS)-lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations.
Methods: We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic substrates.
Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs.
View Article and Find Full Text PDF