Publications by authors named "Ely Boussaty"

Article Synopsis
  • * Researchers created a mouse model lacking the nuclear localization signal for TyrRS, leading to decreased lean and fat mass, improved insulin sensitivity, and normal blood sugar levels, pointing to a metabolic role for TyrRS.
  • * YARS1 deficiency in mice also resulted in progressive hearing loss, highlighting the importance of TyrRS in fat storage, metabolism, and overall health, emphasizing the connection between protein synthesis and metabolic regulation.
View Article and Find Full Text PDF

PJVK gene was recently shown to create hypervulnerability to sound in humans and was the first human gene implicated in non-syndromic hearing impairment due to neural defect. Targeted next-generation sequencing of over 150 known deafness genes was performed in the proband. Sanger sequencing was used to validate the PJVK variant and confirm familial segregation of the disease.

View Article and Find Full Text PDF

Background: Ménière's disease (MD) is a disorder of the inner ear that causes episodic bouts of severe dizziness, roaring tinnitus, and fluctuating hearing loss. To date, no targeted therapy exists. As such, we have undertaken a large whole genome sequencing study on carefully phenotyped unilateral MD patients with the goal of gene/pathway discovery and a move towards targeted intervention.

View Article and Find Full Text PDF
Article Synopsis
  • Age-related hearing impairment (ARHL) is a widespread condition among the elderly, influenced by environmental and genetic factors, and studying it in outbred mice can enhance our understanding of its molecular mechanisms.
  • The study used Carworth Farms White (CFW) mice to analyze hearing changes at different ages, measuring their auditory response and collecting genetic data from over 4 million SNPs to identify genes linked to ARHL.
  • Key findings included the discovery of several genetic regions associated with ARHL and the identification of the Prkag2 gene as a potential target for further research into treatments and prevention methods.
View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types, and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation.

View Article and Find Full Text PDF
Article Synopsis
  • Age-related hearing loss (ARHL) is a prevalent condition influenced by genetic factors, and earlier research identified a specific genetic locus linked to its development in mice.
  • The study focused on the gene Fhod3, found in hair cells of the ear, showing that its expression affects the structure and function of these cells.
  • Experiments using mice that either overexpressed or lacked Fhod3 demonstrated progressive hearing loss and alterations in hair cell structure, suggesting that targeting Fhod3 could lead to new treatments for ARHL in people.
View Article and Find Full Text PDF

Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American).

View Article and Find Full Text PDF

In the senescence-accelerated mouse prone 8 (SAMP8) mouse model, oxidative stress leads to premature senescence and age-related hearing impairment (ARHI). CMS121 inhibits oxytosis/ferroptosis by targeting fatty acid synthase. The aim of our study was to determine whether CMS121 is protective against ARHI in SAMP8 mice.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL), or presbycusis, is one of the most prevalent conditions affecting the global population. A substantial fraction of patients with ARHL have no identifiable mutation despite over a hundred having been discovered, suggesting unidentified monogenic or polygenic causes. In this study, we investigated the hearing function of the aging outbred CFW mice through auditory brainstem response (ABR) thresholds.

View Article and Find Full Text PDF

Hearing loss is the most common sensory deficit worldwide, with the majority of preventable injury attributed to noise-induced hearing loss (NIHL). Highly conserved cochlear genetics between humans and mice have made this animal model a high-yield candidate for better characterizing the biologic and genetic underpinnings of human NIHL. This review aims to summarize advances in understanding the genetics of noise-induced hearing loss in mouse models dating from the early 1990s.

View Article and Find Full Text PDF

ABR wave I amplitude represents the synapse of auditory nerve fibers with the inner hair cell and is highly correlated with synapse counts. Cochlear synaptopathy, the loss of synaptic connections between inner hair cells and auditory nerve fibers, has been well-demonstrated in animal models of noise-induced hearing loss. The peak-to-peak wave I amplitude was determined at baseline and 2 weeks after noise exposure.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) provide an unbiased first look at genetic loci involved in aging and noise-induced sensorineural hearing loss and tinnitus. The hearing phenotype, whether audiogram-based or self-report, is regressed against genotyped information at representative single nucleotide polymorphisms (SNPs) across the genome. Findings include the fact that both hearing loss and tinnitus are polygenic disorders, with up to thousands of genes, each of effect size of < 0.

View Article and Find Full Text PDF

This is the first genome-wide association study with the Hybrid Mouse Diversity Panel (HDMP) to define the genetic landscape of the variation in the suprathreshold wave 1 amplitude of the auditory brainstem response (ABR) both pre- and post-noise exposure. This measure is correlated with the density of the auditory neurons (AN) and/or the compliment of synaptic ribbons within the inner hair cells of the mouse cochlea. We analyzed suprathreshold ABR for 635 mice from 102 HMDP strains pre- and post-noise exposure (108 dB 10 kHz octave band noise exposure for 2 h) using auditory brainstem response (ABR) wave 1 suprathreshold amplitudes as part of a large survey (Myint et al.

View Article and Find Full Text PDF

Background: HLA antigens have been widely studied for their role in transplantation biology, human diseases and population diversity. The aim of this study was to provide the first profile of HLA class I and class II alleles in the Mauritanian population.

Methods: HLA typing was carried in 93 healthy Mauritanian blood donors, using single specific primer amplification (PCR-SSP).

View Article and Find Full Text PDF