Publications by authors named "Elvira Mass"

Macrophages are innate immune cells present in all tissues, in which they participate in immune responses and maintenance of tissue homeostasis. They develop either from embryonic precursors or from circulating monocytes, and their functions are in part dictated by their origin. We previously observed robust monocyte recruitment and contribution to the macrophage pool in brown adipose tissue.

View Article and Find Full Text PDF

Macrophages are integral components of the innate immune system that colonize organs early in development and persist into adulthood through self-renewal. Their fate, whether they are replaced by monocytes or retain their embryonic origin, depends on tissue type and integrity. Macrophages are influenced by their environment, a phenomenon referred to as developmental programming.

View Article and Find Full Text PDF

Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function.

View Article and Find Full Text PDF

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts.

View Article and Find Full Text PDF

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown.

View Article and Find Full Text PDF

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure.

View Article and Find Full Text PDF

Yolk sac-derived macrophages have been described to promote organogenesis and tissue function in animal models, but the relevance of these studies for humans has been debated. Wang et al. reveal that human macrophage development follows similar developmental trajectories with functionally distinct macrophage populations across tissues as observed in mice.

View Article and Find Full Text PDF

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner.

View Article and Find Full Text PDF

Macrophages are cells of the innate immune system, which contribute to the maintenance of tissue homeostasis and form the first line of defense against pathogens. Tissue-resident macrophages that originate from erythro-myeloid-progenitors in the yolk sac colonize the organs early during development and self-maintain in most organs throughout adulthood. Under homeostatic and pathological conditions, circulating monocytes infiltrate the tissue, where they differentiate into macrophages.

View Article and Find Full Text PDF

To better understand the distinct functions of yolk-sac-derived tissue-resident macrophages (TRMs) and bone-marrow-derived macrophages in homeostasis and disease, it is important to trace the ontogeny of these cells. The majority of TRMs originate from erythro-myeloid progenitors (EMPs). EMPs develop into pre-macrophages (pMacs), which can be detected starting at embryonic developmental day (E)9.

View Article and Find Full Text PDF

Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target.

View Article and Find Full Text PDF

Not only macrophages, but also neutrophils, are a main target of clodronate. In this issue of JEM, Culemann et al. (2023.

View Article and Find Full Text PDF

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function.

View Article and Find Full Text PDF

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis.

View Article and Find Full Text PDF

Aims: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD.

View Article and Find Full Text PDF

The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components.

View Article and Find Full Text PDF

Objective: Recent studies have demonstrated emerging evidence of the role of inflammation in the growth and recurrence of chronic subdural hematoma (cSDH). Red blood cell distribution width to platelet count ratio (RPR) is a novel biomarker for inflammation in cancer, cardiac, and inflammatory diseases. The present retrospective study investigated the impact of RPR on recurrence after burr hole surgery for cSDH in 297 patients.

View Article and Find Full Text PDF

Background: Aortic stenosis (AS) is the most common valve disorder characterized by fibro-calcific remodeling of leaflets. Recent evidence indicated that there is a sex-related difference in AS development and progression. Fibrotic remodeling is peculiar in women's aortic valves, while men's leaflets are more calcified.

View Article and Find Full Text PDF

Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.

View Article and Find Full Text PDF

In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration.

View Article and Find Full Text PDF
Article Synopsis
  • The unfolded protein response (UPR) plays a key role in liver function, particularly how disturbances in the endoplasmic reticulum (ER) can disrupt metabolic balance.
  • Creld2 is identified as a protein that helps manage stress responses in cells, enhancing protein folding and aiding recovery from ER stress.
  • The absence of Creld2 leads to improper UPR regulation, resulting in liver fat accumulation, especially in males, indicating that chronic ER stress may contribute to liver diseases like fatty liver and steatohepatitis.
View Article and Find Full Text PDF

The interaction between myeloid cells and the extracellular matrix is important for tissue homeostasis and pathophysiology. In this issue of Immunity, Keerthivasan et al. reveal crosstalk dependent on the collagen receptor LAIR1 that regulates the dynamics of monocytes and macrophages during steady-state and cancer.

View Article and Find Full Text PDF

The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner.

View Article and Find Full Text PDF