We report a computer simulation study of a system of parallel hard ellipsoids with attractive interactions represented by a spherically symmetric square well of range lamba. For suitable values of the results are consistent with the sequence of phases nematic (N), smectic-A (SmA), reentrant nematic (N(re)), and crystal (Cr) under pressure. Both the N-SmA and the SmA-N(re) transitions are found to be first order or continuous depending on temperature.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2005
A simple molecular model consisting of parallel hard oblate ellipsoids with superimposed square-well attractive interactions of variable range is considered for the study of the phase behavior of thermotropic discotic molecules. A density functional theory appropriate for nonuniform fluids is formulated in which the hard-core contributions to the free energy are treated within a nonlocal weighted-density approximation (WDA) while the attractive contributions are treated at a mean-field level. It is shown that the columnar phase becomes stable relative to the nematic phase at fluid densities for a range of values of the range of the attractive well.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2005
The smectic phase is studied for a thermotropic fluid model consisting of aligned hard ellipsoids with superimposed square-well attractive interactions of variable range. The system is analyzed using a density functional theory in which the hard-core contributions to the free-energy functional are treated within a nonlocal weighted density approximation and the attractive contributions are considered at a mean-field level. In the absence of attractions the model reduces, under appropriate scaling, to a fluid of hard spheres and therefore does not exhibit smectic ordering.
View Article and Find Full Text PDFWe present a detailed computer simulation study of the phase behavior of the Gay-Berne liquid crystal model with molecular anisotropy parameter kappa=4.4. According to previous investigations: (i) this model exhibits isotropic (I), smectic-A (Sm-A), and smectic-B (Sm-B) phases at low pressures, with an additional nematic (N) phase between the I and Sm-A phases at sufficiently high pressures; (ii) the range of stability of the Sm-A phase turns out to be essentially constant when varying the pressure, whereas other investigations seem to suggest a pressure-dependent Sm-A range; and (iii) the range of stability of the Sm-B phase remains unknown, as its stability with respect to the crystal phase has not been previously considered.
View Article and Find Full Text PDFA Helmholtz free energy density functional is developed to describe the vapor-liquid interface of associating chain molecules. The functional is based on the statistical associating fluid theory with attractive potentials of variable range (SAFT-VR) for the homogenous fluid [A. Gil-Villegas, A.
View Article and Find Full Text PDF