Two hyperbolic reaction-diffusion models are built up in the framework of Extended Thermodynamics in order to describe the spatio-temporal interactions occurring in a two or three compartments aquatic food chain. The first model focuses on the dynamics between phytoplankton and zooplankton, whereas the second one accounts also for the nutrient. In these models, infections and influence of illumination on photosynthesis are neglected.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2013
A one-dimensional hyperbolic reaction-diffusion model of epidemics is developed to describe the dynamics of diseases spread occurring in an environment where three kinds of individuals mutually interact: the susceptibles, the infectives, and the removed. It is assumed that the disease is transmitted from the infected population to the susceptible one according to a nonlinear convex incidence rate. The model, based upon the framework of extended thermodynamics, removes the unphysical feature of instantaneous diffusive effects, which is typical of parabolic models.
View Article and Find Full Text PDF