Publications by authors named "Elvia Mena-Avila"

Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease.

View Article and Find Full Text PDF

Cerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic-ischaemic (HI) injury in utero (at 70%-83% gestation) are born with muscle stiffness, hyperreflexia and, as recently discovered, increased 5-HT in the spinal cord.

View Article and Find Full Text PDF

Spastic cerebral palsy (CP) is a movement disorder marked by hypertonia and hyperreflexia; the most prevalent comorbidity is pain. Since spinal nociceptive afferents contribute to both the sensation of painful stimuli as well as reflex circuits involved in movement, we investigated the relationship between prenatal hypoxia-ischemia (HI) injury which can cause CP, and possible changes in spinal nociceptive circuitry. To do this, we examined nociceptive afferents and mechanical and thermal sensitivity of New Zealand White rabbit kits after prenatal HI or a sham surgical procedure.

View Article and Find Full Text PDF

Somatosensory input strength can be modulated by primary afferent depolarization (PAD) generated predominantly via presynaptic GABA receptors on afferent terminals. We investigated whether ionotropic nicotinic acetylcholine receptors (nAChRs) also provide modulatory actions, focusing on myelinated afferent excitability in in vitro murine spinal cord nerve-attached models. Primary afferent stimulation-evoked synaptic transmission was recorded in the deep dorsal horn as extracellular field potentials (EFPs), whereas concurrently recorded dorsal root potentials (DRPs) were used as an indirect measure of PAD.

View Article and Find Full Text PDF

Somatosensory information can be modulated at the spinal cord level by primary afferent depolarization (PAD), known to produce presynaptic inhibition (PSI) by decreasing neurotransmitter release through the activation of presynaptic ionotropic receptors. Descending monoaminergic systems also modulate somatosensory processing. We investigated the role of D-like and D-like receptors on pathways mediating PAD in the hemisected spinal cord of neonatal mice.

View Article and Find Full Text PDF

Somatosensory afferent transmission strength is controlled by several presynaptic mechanisms that reduce transmitter release at the spinal cord level. We focused this investigation on the role of α-adrenoceptors in modulating sensory transmission in low-threshold myelinated afferents and in pathways mediating primary afferent depolarization (PAD) of neonatal mouse spinal cord. We hypothesized that the activation of α-adrenoceptors depresses low threshold-evoked synaptic transmission and inhibits pathways mediating PAD.

View Article and Find Full Text PDF

Background: Clobenpropit, a potent antagonist/inverse agonist at the histamine H receptor (HR), reduced the cytotoxic action of 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells transfected with the human HR. We therefore set out to study whether this effect involved a receptor-independent action on dopamine transport.

Methods: The uptake of [H]-dopamine was assayed in SH-SY5Y cells and rat striatal or cerebro-cortical isolated nerve terminals (synaptosomes).

View Article and Find Full Text PDF