Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn).
View Article and Find Full Text PDFBinding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts.
View Article and Find Full Text PDFVirtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer.
View Article and Find Full Text PDFThe neonatal Fc receptor (FcRn) is known to mediate placental transfer of IgG from mother to unborn. IgE is widely known for triggering immune responses to environmental antigens. Recent evidence suggests FcRn-mediated transplacental passage of IgE during pregnancy.
View Article and Find Full Text PDF