With the flourishing of spatial omics technologies, alignment and stitching of slices becomes indispensable to decipher a holistic view of 3D molecular profile. However, existing alignment and stitching methods are unpractical to process large-scale and image-based spatial omics dataset due to extreme time consumption and unsatisfactory accuracy. Here we propose SANTO, a coarse-to-fine method targeting alignment and stitching tasks for spatial omics.
View Article and Find Full Text PDFThe relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-task learning, and genetic algorithms to predict the viral fitness landscape and explore antigenic evolution via in silico directed evolution.
View Article and Find Full Text PDFGene regulation is a central topic in cell biology. Advances in omics technologies and the accumulation of omics data have provided better opportunities for gene regulation studies than ever before. For this reason deep learning, as a data-driven predictive modeling approach, has been successfully applied to this field during the past decade.
View Article and Find Full Text PDF