Publications by authors named "Elspeth M McLachlan"

The collective efforts of Australasian neuroscientists over the past 50 years to forge a binational presence are reviewed in this article. The events in the 1970s leading to the formation of an informal Australian Neurosciences Society are discussed in the context of the international emergence of neuroscience as an interdisciplinary science. Thereafter, the establishment in 1980 of the Australian Neuroscience Society, subsequently renamed as the Australasian Neuroscience Society (ANS), is described.

View Article and Find Full Text PDF

This article discusses the background to the need for change in the reporting of experiments involving animals, including a report of a consensus meeting organised by the Basel Declaration Society and Understanding Animal Research UK that sought to Internationalise guidelines for reporting experiments involving animals. A commentary on the evolution of BJP's attempts to implement the ARRIVE guidelines and details of our new guidance for authors is published separately (McGrath, 2014). This is one of a series of editorials discussing updates to the BJP Instructions to Authors LINKED EDITORIALS: This Editorial is the first in a series.

View Article and Find Full Text PDF

Following a peripheral nerve injury, a sterile inflammation develops in sympathetic and dorsal root ganglia (DRGs) with axons that project in the damaged nerve trunk. Macrophages and T-lymphocytes invade these ganglia where they are believed to release cytokines that lead to hyperexcitability and ectopic discharge, possibly contributing to neuropathic pain. Here, we examined the role of the sympathetic innervation in the inflammation of L5 DRGs of Wistar rats following transection of the sciatic nerve, comparing the effects of specific surgical interventions 10-14 days prior to the nerve lesion with those of chronic administration of adrenoceptor antagonists.

View Article and Find Full Text PDF

After experimental nerve injuries that extensively disrupt axons, such as chronic constriction injury, immune cells invade the nerve, related dorsal root ganglia (DRGs), and spinal cord, leading to hyperexcitability, raised sensitivity, and pain. Entrapment neuropathies, such as carpal tunnel syndrome, involve minimal axon damage, but patients often report widespread symptoms. To understand the underlying pathology, a tube was placed around the sciatic nerve in 8-week-old rats, leading to progressive mild compression as the animals grew.

View Article and Find Full Text PDF

Following reinnervation of denervated rat tail arteries, nerve-evoked contractions are at least as large as those evoked in normally innervated arteries despite a much lower nerve terminal density. Here nerve-evoked contractions have been investigated after transection of half the sympathetic innervation of normal tail arteries. After 1 week, the noradrenergic plexus 50-70 mm along the tail was about half as dense as control.

View Article and Find Full Text PDF

Despite reduced sympathetic activity below the level of a spinal cord injury (SCI), venoconstriction during autonomic dysreflexia increases venous return to the heart. Here, contractions of isometrically mounted tail veins from rats with spinal transection at T4 performed 8 - 10 weeks earlier are compared with those from sham-operated rats. After SCI, lumen diameter was reduced by ∼30% and the contractions evoked by electrical stimulation of the perivascular axons were larger than control.

View Article and Find Full Text PDF

We have investigated the recovery of sympathetic control following reinnervation of denervated rat tail arteries by relating the reappearance of noradrenergic terminals to the amplitude of nerve-evoked contractions of isometrically mounted artery segments in vitro. We have also assessed reactivity to vasoconstrictor agonists. Freezing the collector nerves near the base of the tail in adult rats denervated the artery from ∼40 mm along the tail.

View Article and Find Full Text PDF

Sympathetic nerve-mediated contractions of mesenteric and tail arteries controlled by preganglionic neurones decentralized by a spinal cord injury (SCI) are potentiated, and likely contribute to autonomic dysreflexia. However, reactivity to the α(1)-adrenoceptor agonist phenylephrine has been reported to be enhanced in vascular beds controlled by preganglionic neurones lying both rostral and caudal to an SCI in vivo. Here responses of isometrically-mounted median and saphenous arteries isolated from rats 2 and 8 weeks after transection of the T4 spinal cord have been compared with those from sham-operated rats.

View Article and Find Full Text PDF

Background And Purpose: Vascular 'denervation' hyper-reactivity has generally been investigated 1-2 weeks after administration of chemicals that temporarily prevent transmitter release, but do not necessarily inactivate the neuronal noradrenaline transporters (NETs). We have investigated the reactivity of rat tail arteries over longer periods after removing the terminals by surgical denervation.

Experimental Approach: Two and 7 weeks after denervation, myography was used to assess contractions of isolated arterial segments to phenylephrine, methoxamine, clonidine, vasopressin and angiotensin II (AII).

View Article and Find Full Text PDF

Objective: Cutaneous application of menthol in healthy subjects induces cold allodynia via sensitization of cold-sensitive nociceptors. We investigated the effects of menthol on preexisting cold allodynia in patients to test whether the allodynia was exacerbated.

Design: In eight neuropathic pain patients (six of peripheral, two of central origin), 40% menthol was applied topically to an area of preexisting cold allodynia.

View Article and Find Full Text PDF

The inflammatory response has been characterized in the lumbosacral segments (L4-S1) of rats after spinal transection at T8. Immune cells were identified immunohistochemically using antibodies to complement type 3 receptor, CD11b (OX-42), the macrophage lysosomal antigen, CD68 (ED1), major histocompatibility complex class II (MHC II), and CD163 (ED2), a marker of perivascular cells. One week after cord transection, OX-42+ microglial density had nearly doubled.

View Article and Find Full Text PDF

Sympathetic vasoconstrictor pathways pass through paravertebral ganglia carrying ongoing and reflex activity arising within the central nervous system to their vascular targets. The pattern of reflex activity is selective for particular vascular beds and appropriate for the physiological outcome (vasoconstriction or vasodilation). The preganglionic signals are distributed to most postganglionic neurones in ganglia via synapses that are always suprathreshold for action potential initiation (like skeletal neuromuscular junctions).

View Article and Find Full Text PDF

Chronic constriction injury (CCI) of the sciatic nerve in rodents produces mechanical and thermal hyperalgesia and is a common model of neuropathic pain. Here we compare the inflammatory responses in L4/5 dorsal root ganglia (DRGs) and spinal segments after CCI with those after transection and ligation at the same site. Expression of ATF3 after one week implied that 75% of sensory and 100% of motor neurones had been axotomized after CCI.

View Article and Find Full Text PDF

The consequences of spinal cord injury on the function of sympathetic pathways in the periphery have generally been ignored. We discuss two types of plasticity that follow disruption of sympathetic pathways in rats . The first relates to the partial denervation of sympathetic ganglia that would follow the loss of some preganglionic neurones.

View Article and Find Full Text PDF

In patients with high thoracic spinal lesions that remove most of the central drive to splanchnic preganglionic neurons, visceral or nociceptive stimuli below the lesion can provoke large increases in blood pressure (autonomic dysreflexia). We have examined the effects of T4 spinal transection on isometric contractions of mesenteric arteries isolated from spinalized rats. Nerve-evoked contractions involved synergistic roles for norepinephrine and ATP.

View Article and Find Full Text PDF

Hypertrophy of the perivascular plexus is thought to play a role in the development of hypertension in spontaneously hypertensive rats (SHR). However, it is not known whether the sympathetic varicosities are more numerous or larger, or form more neurovascular junctions. Further, a parallel hypertrophy of primary afferent terminals around the vessels might modulate any effects of hypertrophied sympathetic terminals.

View Article and Find Full Text PDF

Spinal cord transection produces a marked increase in the response of the isolated rat tail artery to sympathetic nerve stimulation, possibly as a result of a decrease in ongoing sympathetic activity. We have tested the effects of removing ongoing nerve activity on neurovascular transmission by cutting the preganglionic input to postganglionic neurones supplying the tail artery (decentralization). Isometric contractions to nerve stimulation were compared between decentralized arteries and those from age-matched and sham-operated controls.

View Article and Find Full Text PDF

Macrophages and T-lymphocytes invade the spinal cord in and around a lesion and spinal microglia are converted into macrophages. After spinal transection at T8 in rats, T-lymphocyte and major histocompatibility complex II+ (MHC II+) macrophage numbers were increased within dorsal root ganglia (DRGs) below the lesion. Inflammation was greater in DRGs closer to the site of transection.

View Article and Find Full Text PDF

Comparison was made between recruitment of T-lymphocytes and macrophages into lumbar sympathetic ganglia (SGs) and dorsal root ganglia (DRGs) following sciatic nerve transection in rats. In both control and lesioned SGs, resident (ED2+) macrophages expressed less major histocompatibility complex class II (MHC II), but MHC II+ macrophage density was higher, than in equivalent DRGs. The influx of T-cells was larger and the influx and activation of macrophages were more sustained in SGs than in DRGs.

View Article and Find Full Text PDF

Inflammation proximal to a peripheral nerve injury may be responsible for ectopic discharge and/or death of sensory neurones, factors thought to contribute to the development and/or maintenance of neuropathic pain. Here, ED1+, ED2+ and major histocompatibility complex class II (MHC II)+ macrophages in dorsal root ganglia (DRGs) and spinal nerve roots have been compared quantitatively in adult rats following transection of one sciatic or one spinal nerve, using double labelling immunohistochemistry. In control DRGs, all ED2+ cells expressed ED1 and some also MHC II.

View Article and Find Full Text PDF

Patients with severe spinal cord lesions that damage descending autonomic pathways generally have low resting arterial pressure but bladder or colon distension or unheeded injuries may elicit a life-threatening hypertensive episode. Such episodes (known as autonomic dysreflexia) are thought to result from the loss of descending baroreflex inhibition and/or plasticity within the spinal cord. However, it is not clear whether changes in the periphery contribute to the exaggerated reflex vasoconstriction.

View Article and Find Full Text PDF

To determine whether peripheral nerve injury has similar effects on all functional types of afferent neuron, we retrogradely labeled populations of neurons projecting to skin and to muscle with FluoroGold and lesioned various peripheral nerves in the rat. Labeled neurons were counted after different periods and related to immunohistochemically identified ectopic terminals and satellite cells in lumbar dorsal root ganglia. After 10 weeks, 30% of cutaneous afferent somata labeled from transected sural nerves had disappeared but, if all other branches of the sciatic nerve had also been cut, 60% of cutaneous neurons were lost.

View Article and Find Full Text PDF

The electrotonic behavior of three phenotypes of sympathetic postganglionic neuron has been analyzed to assess whether their distinct cell input capacitances simply reflect differences in morphology. Because the distribution of membrane properties over the soma and dendrites is unknown, compartmental models incorporating cell morphology were used to simulate hyperpolarizing responses to small current steps. Neurons were classified as phasic (Ph), tonic (T), or long-afterhyperpolarizing (LAH) by their discharge pattern to threshold depolarizing current steps and filled with biocytin to determine their morphology.

View Article and Find Full Text PDF