Publications by authors named "Elson Longo"

Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).

View Article and Find Full Text PDF

Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO (NPs) on multiple endpoints (e.

View Article and Find Full Text PDF
Article Synopsis
  • CeO samples were made using the polymeric precursor method with varying calcination temperatures, leading to changes in particle size and shape.
  • Advanced techniques like positron annihilation lifetime spectroscopy (PALS) and electron paramagnetic resonance (EPR) revealed the presence of different types of oxygen vacancies associated with various cerium ions.
  • Impedance spectroscopy showed that as the calcination temperature increased, there was a reduction in electrical conductance and the formation of polarons in the material.
View Article and Find Full Text PDF

AgCrO is a representative member of a family of Ag-containing semiconductors with highly efficient visible-light-driven responsive photocatalysts. The doping process with Eu is known to effectively tune their properties, thus opening opportunities for investigations and application. Here, we report the enhancement of the photocatalytic activity and stability of AgCrO by introducing Eucations.

View Article and Find Full Text PDF

It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata.

View Article and Find Full Text PDF

The cytotoxic of α-AgWO synthesized in different morphologies (cuboidal (AW-C), hexagonal rod-like (AW-HRL) and nanometric rod-like (AW-NRL) was analyzed to understand the impact of morphological modulation on the toxicity of 3 T3 cell lines in the dark and when photoactivated by visible light. Pathways of toxicity were examined, such as parameters and electrostatic interaction, uptake, ion release and ROS production. Cytotoxicity was observed for all samples after reaching concentrations exceeding 7.

View Article and Find Full Text PDF

Persistent molecules, such as pesticides, herbicides, and pharmaceuticals, pose significant threats to both the environment and human health. Advancements in developing efficient photocatalysts for degrading these substances can play a fundamental role in remediating contaminated environments, thereby enhancing safety for all forms of life. This study investigates the enhancement of photocatalytic efficiency achieved by incorporating La into AgPO, using the co-precipitation method in an aqueous medium.

View Article and Find Full Text PDF

Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band.

View Article and Find Full Text PDF
Article Synopsis
  • ZnWO nanoparticles (ZnWO-NPs) are used in various applications like sensors, lasers, and batteries, but their effects on aquatic ecosystems remain unclear.
  • This study is the first to assess the toxicity of ZnWO-NPs on the green microalga Raphidocelis subcapitata, revealing growth inhibition and changes in photosynthesis at specific concentrations.
  • The findings indicate that high levels of ZnWO-NPs can disrupt biochemical processes in microalgae, which could have broader implications for aquatic food chains and ecosystem health.
View Article and Find Full Text PDF

The effects on the lattice structure and electronic properties of different polymorphs of silver halide, AgX (X = Cl, Br, and I), induced by laser irradiation (LI) and electron irradiation (EI) are investigated using a first-principles approach, based on the electronic temperature () within a two-temperature model (TTM) and by increasing the total number of electrons (), respectively. molecular dynamics (AIMD) simulations provide a clear visualization of how and induce a structural and electronic transformation process during LI/EI. Our results reveal the diffusion processes of Ag and X ions, the amorphization of the AgX lattices, and a straightforward interpretation of the time evolution for the formation of Ag and X nanoclusters under high values of and .

View Article and Find Full Text PDF

Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities.

View Article and Find Full Text PDF

Anthocyanins extracted with deep eutectic solvent (NADES) (chlorine-chloride: xylitol, 5:2) were used to produce polyethylene oxide (PEO) composites through electrospinning technique, analyzing their microscopic and physical characteristics. The coated anthocyanins were then subjected to in vitro gastrointestinal digestion to evaluate their bioaccessibility compared to lyophilized jussara pulp. The remaining total anthocyanin content (TAC) after intestinal in vitro digestion did not change significantly among the assessed samples, and both showed around 30% recovery.

View Article and Find Full Text PDF

Although semiconducting metal oxide (SMOx) nanoparticles (NPs) have attracted attention as sensing materials, the methodologies available to synthesize them with desirable properties are quite limited and/or often require relatively high energy consumption. Thus, we report herein the processing of Zn-doped SnO NPs via a microwave-assisted nonaqueous route at a relatively low temperature (160 °C) and with a short treatment time (20 min). In addition, the effects of adding Zn in the structural, electronic, and gas-sensing properties of SnO NPs were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the electrical properties of β-AgMoO materials, focusing on both Eu-doped and undoped versions synthesized via microwave-assisted hydrothermal methods.
  • It found that the synthesis time affects defect concentrations, particularly silver vacancies (V), showing that Eu doping initially boosts V concentration but leads to a decrease over time.
  • The research employed various analytical methods, like photoluminescence and impedance spectroscopy, to develop a comprehensive understanding of the conduction mechanisms in these materials.
View Article and Find Full Text PDF

Data regarding the effects of binary metal mixtures in marine zooplankton are scarce, particularly for rotifers. We examined the toxicity of 21 binary equitoxic mixtures of As, Cd, Cu, Fe, Hg, Pb, and Zn on the euryhaline rotifer Proales similis. The toxic units (TU) revealed that 20 of these binary mixtures exhibited synergistic effects (TU < 1.

View Article and Find Full Text PDF

Here, we present the synthesis of a highly efficient V-doped α-AgWO catalyst for the oxidation of sulfides to sulfones, exhibiting a high degree of tolerance towards various sensitive functional groups. Remarkably, the catalysts with 0.01% V-doping content exhibited outstanding selectivity towards the oxidation process.

View Article and Find Full Text PDF

Silver tungstate (α-AgWO), silver molybdate (β-AgMoO), and silver vanadate (α-AgVO) microcrystals have shown interesting antimicrobial properties. However, their biocompatibility is not yet fully understood. Cytotoxicity and the inflammatory response of silver-containing microcrystals were analyzed in THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™ assay, flow cytometry, confocal microscopy, and ELISA.

View Article and Find Full Text PDF

Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO and pH were varied.

View Article and Find Full Text PDF

The influence of black carbon nanoparticles on J774.A1 murine cells was investigated with the objective of exploring the cytotoxicity of black carbon functionalized with ethylenediamine CB-EDA. The results showed that CB-EDA has a cytotoxic profile for J774.

View Article and Find Full Text PDF

Although the physics and chemistry of materials are driven by exposed surfaces in the morphology, they are fleeting, making them inherently challenging to study experimentally. The rational design of their morphology and delivery in a synthesis process remains complex because of the numerous kinetic parameters that involve the effective shocks of atoms or clusters, which end up leading to the formation of different morphologies. Herein, we combined functional density theory calculations of the surface energies of ZnO and the Wulff construction to develop a simple computational model capable of predicting its available morphologies in an attempt to guide the search for images obtained by field-emission scanning electron microscopy (FE-SEM).

View Article and Find Full Text PDF

The worldwide outbreak of the coronavirus pandemic (COVID-19) and other emerging infections are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. It is noteworthy that Ag-based semiconductors can help orchestrate several strategies to fight this serious societal issue. In this work, we present the synthesis of α-AgWO, β-AgMoO, and AgCrO and their immobilization in polypropylene in the amounts of 0.

View Article and Find Full Text PDF

The COVID-19 pandemic has emerged as an unprecedented global healthcare emergency, demanding the urgent development of effective materials to inactivate the SARS-CoV-2 virus. This research was planned to disclose the remarkable biocidal activity of SiO-Ag composites incorporated into low-density polyethylene. For this purpose, a joint experimental and theoretical [based on first-principles calculations at the density functional theory (DFT) level] study is performed.

View Article and Find Full Text PDF
Article Synopsis
  • * Citric acid-synthesized samples exhibited high photocatalytic activity for degrading Rhodamine B and maintained 91% activity after four recycling tests, indicating their effectiveness and durability.
  • * The research proposes a reaction pathway involving dissolution and precipitation processes, emphasizing the pivotal roles of hydroxyl radicals and holes, and aims to enhance understanding of crystallization for applications in sensors and catalysis.
View Article and Find Full Text PDF

Background/aims: The development of new nanomaterials has been growing in recent decades to bring benefits in several areas, especially carbon-based nanoparticles, which have unique physical-chemical properties and allow to take on several applications. Consequently, the use of new nanomaterials without previous toxicological studies raises concern about possible harmful health effects. The aim of this study was to investigate the cytotoxic profile of a new multi-walled carbon nanotube (MWCNT) functionalized with tetraethylenepentamine called OCNT-TEPA using in vitro assays in murine macrophage cells linage J774 A.

View Article and Find Full Text PDF

In this work, α-AgCuWO (0 ≤ ≤ 0.16) solid solutions with enhanced antibacterial (against methicillin-resistant ) and antifungal (against ) activities are reported. A plethora of techniques (X-ray diffraction with Rietveld refinements, inductively coupled plasma atomic emission spectrometry, micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence emissions, and X-ray photoelectron spectroscopy) were employed to characterize the as-synthetized samples and determine the local coordination geometry of Cu cations at the orthorhombic lattice.

View Article and Find Full Text PDF