Most cell surface receptors are sialylated, i.e. have sialic acid as the terminal residue of their sugar chains, but can be desialylated by sialidases, such as neuraminidase 1 (Neu1).
View Article and Find Full Text PDFWe have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding.
View Article and Find Full Text PDFIntegrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro.
View Article and Find Full Text PDFIn their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs.
View Article and Find Full Text PDFOlfactory ensheathing cells (OECs) have neuro-restorative properties in animal models for spinal cord injury, stroke, and amyotrophic lateral sclerosis. Here we used a multistep screening approach to discover genes specifically contributing to the regeneration-promoting properties of OECs. Microarray screening of the injured olfactory pathway and of cultured OECs identified 102 genes that were subsequently functionally characterized in cocultures of OECs and primary dorsal root ganglion (DRG) neurons.
View Article and Find Full Text PDFInt Rev Neurobiol
September 2013
Adult central nervous system (CNS) axons fail to regenerate after injury because of inhibitory factors in the surrounding environment and a low intrinsic regenerative capacity. Axons in the adult peripheral nervous system have a higher regenerative capacity, due in part to the presence of certain integrins-receptors for the extracellular matrix. Integrins are critical for axon growth during the development of the nervous system but are absent from some adult CNS axons.
View Article and Find Full Text PDFGenome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC).
View Article and Find Full Text PDFSchwann cells (SCs) and olfactory ensheathing glia (OEG) have both been used as cellular transplants to promote spinal cord repair. Both cell types support axonal regeneration and have beneficial effects on functional recovery. A significant difference between SCs and OEG is the effect of these cell types on astrocytes (ACs) present in the neural scar.
View Article and Find Full Text PDFOlfactory ensheathing glia (OEG) are a specialized type of glia that support the growth of primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. Transplantation of OEG in the injured spinal cord promotes sprouting of injured axons and results in reduced cavity formation, enhanced axonal and tissue sparing, remyelination, and angiogenesis. Gene expression analysis may help to identify the molecular mechanisms underlying the ability of OEG to recreate an environment that supports regeneration in the central nervous system.
View Article and Find Full Text PDFOlfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive environment for newly formed axons. In the spinal cord, axons are not able to restore connections after an injury.
View Article and Find Full Text PDFThe neural scar that forms after injury to the mammalian central nervous system is a barrier to sprouting and regenerating axons. In addition to reactive astrocytes that are present throughout the lesion site, leptomeningeal fibroblasts invade the lesion core. When isolated in vitro, these cells form a very poor substrate for growing neurites, even more so than reactive astrocytes.
View Article and Find Full Text PDF