Many therapeutic agents are macrocyclic trisubstituted alkenes but preparation of these structures is typically inefficient and non-selective. A possible solution would entail catalytic macrocyclic ring-closing metathesis, but these transformations require high catalyst loading, conformationally rigid precursors and are often low yielding and/or non-stereoselective. Here we introduce a ring-closing metathesis strategy for synthesis of trisubstituted macrocyclic olefins in either stereoisomeric form, regardless of the level of entropic assistance.
View Article and Find Full Text PDFHematopoietic progenitor kinase (HPK1), a negative regulator of TCR-mediated T-cell activation, has been recognized as a novel antitumor immunotherapy target. Structural optimization of kinase inhibitor through a systematic two-dimensional diversity screen of pyrazolopyridines led to the identification of potent and selective compounds. Crystallographic studies with HPK1 revealed a favorable water-mediated interaction with Asp155 and a salt bridge to Asp101 with optimized heterocyclic solvent fronts that were critical for enhanced potency and selectivity.
View Article and Find Full Text PDFKinetically controlled catalytic cross-metathesis reactions that generate (Z)-α,β-unsaturated esters selectively are disclosed. A key finding is that the presence of acetonitrile obviates the need for using excess amounts of a more valuable terminal alkene substrates. On the basis of X-ray structure and spectroscopic investigations a rationale for the positive impact of acetonitrile is provided.
View Article and Find Full Text PDFThe first examples of catalyst-controlled stereoselective macrocyclic ring-closing metathesis reactions that generate Z-enoates as well as (E,Z)- or (Z,E)-dienoates are disclosed. Reactions promoted by 3.0-10 mol % of a Mo-based monoaryloxide pyrrolide complex proceed to completion within 2-6 h at room temperature.
View Article and Find Full Text PDFThe first examples of catalytic cross-metathesis (CM) reactions that furnish Z-(pinacolato)allylboron and Z-(pinacolato)alkenylboron compounds are disclosed. Products are generated with high Z selectivity by the use of a W-based monoaryloxide pyrrolide (MAP) complex (up to 91% yield and >98:2 Z:E). The more sterically demanding Z-alkenylboron species are obtained in the presence of Mo-based MAP complexes in up to 93% yield and 97% Z selectivity.
View Article and Find Full Text PDF