Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor.
View Article and Find Full Text PDFTranscription of the prolactin gene is dynamically controlled by positive and negative hormone signals that target the regulatory promoter region. Based on the inducibility of prolactin gene expression by inhibitors of histone deacetylases (HDACs), we examined the role of histone acetylation at the genomic prolactin promoter as a late step in transcriptional regulation. Chromatin immunoprecipitation analysis of GH4 cells revealed elevated levels of acetylated histones in the promoter and enhancer regions of the gene, compared with downstream intron sequences.
View Article and Find Full Text PDFIn pituitary lactotrophs the prolactin gene is stimulated by neuropeptides and estrogen and is suppressed by dopamine via D2-type receptors. Stimulatory signals converge on activation of the mitogen-activated protein kinases ERK1/2, but dopamine regulation of this pathway is not well defined. Paradoxically, D2 agonists activate ERK1/2 in many cell types.
View Article and Find Full Text PDFRegulation of prolactin gene transcription requires cooperative interactions between the pituitary-specific POU domain protein Pit-1 and members of the ETS transcription factor family. We demonstrate here that the ETS-2 repressor factor (ERF) is expressed in pituitary tumor cells and that overexpression of recombinant ERF inhibits prolactin promoter activity, but not the closely related growth hormone promoter. In non-pituitary cell lines, coexpression of ERF disrupts the cooperative interactions between Pit-1 and ETS-1 and blocks the induction of Pit-1-dependent prolactin promoter activity by cAMP.
View Article and Find Full Text PDFTo assess the function of androgen receptor in androgen-independent prostate cancer cells, human PC-3 prostate carcinoma cells, which lack androgen receptor (AR) expression, were transfected with a full length human AR cDNA sequence inserted into an episomal expression vector system. Several clonal lines of transfected cells expressing varying levels of a 110 kDa AR, as determined by immunoblotting and ligand binding assay, were isolated. The expressed ectopic receptors displayed nuclear binding following androgen treatment and mediated androgen inducibility of a mouse mammary tumor virus (MMTV)-luciferase reporter gene construct in a dose-dependent manner.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 1996
The POU transcription factor Pit-1 activates members of the prolactin/growth hormone gene family in specific endocrine cell types of the pituitary gland. Although Pit-1 is structurally conserved among vertebrate species, evolutionary changes in the pattern of Pit-1 RNA splicing have led to a notable "contraction" of the transactivation domain in the mammalian lineage, relative to Pit-1 in salmonid fish. By site-directed mutagenesis we demonstrate that two splice insertions in salmon Pit-1, called beta (29 aa) and gamma (33 aa), are critical for cooperative activation of the salmon prolactin gene.
View Article and Find Full Text PDFThe POU transcription factor Pit-1 activates the prolactin gene in pituitary lactotrophs and may integrate responses of the gene to external signals. To study the role of Pit-1 in dopaminergic inhibition of the prolactin gene, we transiently transfected Pit-1 and dopamine D2 receptor vectors into a series of heterologous cell lines and examined dopamine regulation of the prolactin gene promoter. Regulation was Pit-1-dependent in all cell lines tested.
View Article and Find Full Text PDFThe role of testosterone (T) and 17 beta-estradiol (E2) in the control of chinook salmon gonadotropin II beta subunit (sGTHII beta) gene was examined. Both E2 and T specifically stimulated GTHII beta gene expression in cultured juvenile rainbow trout pituitary cells. 5'-Flanking regions of the sGTHII beta gene linked to the chloramphenicol acetyltransferase (CAT) expression vector were transfected into these pituitary cells, and cultures were treated with steroid hormones.
View Article and Find Full Text PDFThe salmon pituitary expresses two distinct gonadotropins, gonadotropin I (GTHI) and gonadotropin II (GTHII). These two hormones are synthesized in distinct pituitary cells and secreted at different stages during the reproductive cycle. To study the transcriptional regulation of the hormone-specific beta-subunit of GTHII (sGTHII beta) gene, approximately 3.
View Article and Find Full Text PDFDopaminergic signaling in pituitary lactotrophs is dependent on coupling of D2 receptors to several inhibitory G-protein subtypes, resulting in the activation of multiple signaling pathways. In prolactin-secreting GH4 cells that express cloned D2 receptors, dopamine selectively inhibits the activity of the prolactin gene promoter, a response mediated in part by the pituitary transcription factor Pit-1. Transfected gain-of-function mutants of the G alpha subtypes, Gi alpha 2 (Q205L) and G(o) alpha (Q205L), mimic the promoter-specific and Pit-1-dependent inhibition by dopamine.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 1993
Pit-1 is a transcription factor that has been shown to be critical for pituitary-specific activation of the GH and PRL genes. In rodents and humans, differentiation and/or maintenance of somatotroph, lactotroph, and thyrotroph phenotypes are dependent on expression of a functional pit-1 gene. In rodents, Pit-1 protein is detectable in only these three cell types; however, pit-1 mRNA transcripts appear to be present at comparable levels in all adenohypophysial cell types, suggesting that translational controls may dictate the pattern of Pit-1 expression.
View Article and Find Full Text PDFIn mammals, the pituitary POU homeodomain protein, Pit-1, binds to proximal and distal 5'-flanking sequences of the PRL gene that dictate tissue-specific expression. These DNA sequences are highly conserved among mammals but are dramatically different from PRL 5' sequences in the teleost species, Oncorhynchus tschawytscha (chinook salmon). To analyze the molecular basis for pituitary-specific gene expression in a distantly related vertebrate, we transfected CAT reporter gene constructs containing 2.
View Article and Find Full Text PDFTranscription of the prolactin gene is suppressed by dopaminergic activation of D2 receptors in pituitary lactotrophs. The mechanism of signal transduction at the nuclear level and the cell surface was examined in the dopamine-responsive GH4ZR7 cell line. Dopamine treatment caused a 40-50% decrease in endogenous prolactin mRNA that was specifically blocked by addition of (-)-sulpiride.
View Article and Find Full Text PDFThe structurally related POU homeo domain proteins Pit-1 and Oct-2 activate pituitary- and lymphoid-specific transcription, respectively, by binding to similar AT-rich motifs in their target genes. In this study we identify bases critical for recognition and activation by Pit-1 and examine how small differences in Pit-1 and Oct-2-binding sites can impart differential transcriptional responses in pituitary and B-lymphoid cells. Scanning mutagenesis of Pit-1 response elements in both the rat prolactin and growth hormone genes reveals a critical binding motif recognized in an identical manner by the native Pit-1 protein and cloned Pit-1 gene product.
View Article and Find Full Text PDFThe anterior pituitary gland provides a model for investigating the molecular basis for the appearance of phenotypically distinct cell types, within an organ, a central question in development. The rat prolactin and growth hormone genes are selectively expressed in distinct cell types (lactotrophs and somatotrophs) of the anterior pituitary gland, which reflect differential mechanisms of gene activation or restriction because of interactions of multiple factors binding to these genes. We find that the pituitary-specific 33,000 dalton transcription factor, Pit-1, normally expressed in somatotrophs, lactotrophs, and thyrotrophs, can bind to and activate both growth hormone and prolactin promoters in vitro at levels even tenfold lower than those normally present in pituitary cells.
View Article and Find Full Text PDFThe anterior pituitary gland provides a model for investigating the molecular basis for the appearance of phenotypically distinct cell types within an organ, a central question in development. The rat prolactin and growth hormone genes are expressed selectively in distinct cell types (lactotrophs and somatotrophs, respectively) of the anterior pituitary gland, reflecting differential mechanisms of gene activation or restriction, as a result of the interactions of multiple factors binding to these genes. We find that when the pituitary-specific 33-kD transcription factor Pit-1, expressed normally in both lactotrophs and somatotrophs, is expressed in either the heterologous HeLa cell line or in bacteria, it binds to and activates transcription from both growth hormone and prolactin promoters in vitro at levels even 10-fold lower than those normally present in pituitary cells.
View Article and Find Full Text PDFMultiple related cis-active elements required for cell-specific activation of the rat prolactin gene appear to bind a pituitary-specific positive transcription factor(s), referred to as Pit-1. DNA complementary to Pit-1 mRNA, cloned on the basis of specific binding to AT-rich cell-specific elements in the rat prolactin and growth hormone genes, encodes a 33 kd protein with significant similarity at its carboxyl terminus to the homeodomains encoded by Drosophila developmental genes. Pit-1 mRNA is expressed exclusively in the anterior pituitary gland in both somatotroph and lactotroph cell types, which produce growth hormone and prolactin, respectively.
View Article and Find Full Text PDFIn the anterior pituitary gland, there are five phenotypically distinct cell types, including cells that produce either prolactin (lactotrophs) or growth hormone (somatotrophs). Multiple, related cis-active elements that exhibit synergistic interactions appear to be the critical determinants of the transcriptional activation of the rat prolactin and growth hormone genes. A common positive tissue-specific transcription factor, referred to as Pit-1, appears to bind to all the cell-specific elements in each gene and to be required for the activation of both the prolactin and growth hormone genes.
View Article and Find Full Text PDFShort cis-active sequences of the rat prolactin or Moloney murine leukemia virus genes transfer transcriptional regulation by both epidermal growth factor and phorbol esters to fusion genes. These sequences act in a position- and orientation-independent manner. Competitive binding analyses with nuclear extracts from stimulated and unstimulated cells suggest that different trans-acting factors associate with the regulatory sequence of each gene.
View Article and Find Full Text PDFMitogenic stimulation of Nb2 lymphoma cells by lactogenic hormones (prolactin, human growth hormone) caused a dramatic early increase in ornithine decarboxylase (ODC) activity that achieved a maximal level by 6-8 h. A marked increase in ODC activity was also generated when cells which had reached a growth plateau were transferred to fresh medium that did not stimulate growth. Furthermore, low concentrations of human growth hormone (20 pg/mL) elicited a proliferative response, but did not cause a detectable early increase in ODC activity.
View Article and Find Full Text PDFPRL and other lactogenic hormones are potent mitogens in a lymphoma cell line derived from a lymph node of an estrogenized Noble (Nb) rat. The present study demonstrates that these cells (designated Nb2 node) possess receptors that bind only lactogenic hormones. There are approximately 12,000 receptor sites per cell.
View Article and Find Full Text PDF