Publications by authors named "Elsebet Lund"

It is widely accepted that protein synthesis occurs in the cytoplasms of eukaryotic cells, but some investigators believe that it also occurs in the nucleus. In spite of experiments performed in several labs over many years, the issue of nuclear translation remains unresolved. Advocates assert that it would serve as an economical and convenient way to explain how cells monitor the quality of newly made mRNAs or ribosomes.

View Article and Find Full Text PDF

We show that, in Xenopus laevis oocytes and early embryos, double-stranded exogenous siRNAs cannot function as microRNA (miRNA) mimics in either deadenylation or guided mRNA cleavage (RNAi). Instead, siRNAs saturate and inactivate maternal Argonaute (Ago) proteins, which are present in low amounts but are needed for Dicer processing of pre-miRNAs at the midblastula transition (MBT). Consequently, siRNAs impair accumulation of newly made miRNAs, such as the abundant embryonic pre-miR-427, but inhibition dissipates upon synthesis of zygotic Ago proteins after MBT.

View Article and Find Full Text PDF

The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits.

View Article and Find Full Text PDF

We show that microRNA-427 (miR-427) mediates the rapid deadenylation of maternal mRNAs after the midblastula transition (MBT) of Xenopus laevis embryogenesis. By MBT, the stage when the embryonic cell cycle is remodeled and zygotic transcription of mRNAs is initiated, each embryo has accumulated approximately 10(9) molecules of miR-427 processed from multimeric pri-miR-427 transcripts synthesized after fertilization. We demonstrate that the maternal mRNAs for cyclins A1 and B2 each contain a single miR-427 target sequence, spanning less than 30 nucleotides, that is both necessary and sufficient for deadenylation, and that inactivation of miR-427 leads to stabilization of the mRNAs.

View Article and Find Full Text PDF

The innate immune response can be initiated by the binding of various pathogen-associated compounds or cytokines to receptors on the surfaces of dendritic cells. These interactions result in the activation of many genes and gene products. Several different pathways converge to raise the abundance of specific microRNAs (miRNAs).

View Article and Find Full Text PDF

Two recently published papers (Takano et al., 2005 and Shaheen and Hopper, 2005) demonstrate that in S. cerevisiae, cytoplasmic tRNAs can be transported into the nucleus.

View Article and Find Full Text PDF

We show that the microRNA miR-155 can be processed from sequences present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that accumulates in lymphoma cells. The precursor of miR-155 is likely a transient spliced or unspliced nuclear BIC transcript rather than accumulated BIC RNA, which is primarily cytoplasmic. By using a sensitive and quantitative assay, we find that clinical isolates of several types of B cell lymphomas, including diffuse large B cell lymphoma (DLBCL), have 10- to 30-fold higher copy numbers of miR-155 than do normal circulating B cells.

View Article and Find Full Text PDF

The short lengths of microRNAs (miRNAs) present a significant challenge for detection and quantitation using conventional methods for RNA analysis. To address this problem, we developed a quantitative, sensitive, and rapid miRNA assay based on our previously described messenger RNA Invader assay. This assay was used successfully in the analysis of several miRNAs, using as little as 50-100 ng of total cellular RNA or as few as 1,000 lysed cells.

View Article and Find Full Text PDF

Although it is universally accepted that protein synthesis occurs in the cytoplasm, the possibility that translation can also take place in the nucleus has been hotly debated. Reports have been published claiming to demonstrate nuclear translation, but alternative explanations for these results have not been excluded, and other experiments argue against it. Much of the appeal of nuclear translation is that functional proofreading of newly made mRNAs in the nucleus would provide an efficient way to monitor mRNAs for the presence of premature termination codons, thereby avoiding the synthesis of deleterious proteins.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III-like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate-dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro.

View Article and Find Full Text PDF

60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran.GTP.

View Article and Find Full Text PDF

Recently, several reports have been published in support of the idea that protein synthesis occurs in both the nucleus and the cytoplasm. This proposal has generated a great deal of excitement because, if true, it would mean that our thinking about the compartmentalization of cell functions would have to be re-evaluated. The significance and broad implications of this phenomenon require that the experimental evidence used to support it be carefully evaluated.

View Article and Find Full Text PDF

The partitioning of cells by a nuclear envelope ensures that precursors of ribosomes do not interact prematurely with other components of the translation machinery. Ribosomal subunits are assembled in nucleoli and exported to the cytoplasm in a CRM1/Ran-GTP-dependent fashion. Export of the large (60S) subunit requires a shuttling adaptor protein, NMD3, which binds to mature, correctly folded subunits.

View Article and Find Full Text PDF