Publications by authors named "Else Spassova"

In the present study, two biphasic calcium phosphate biomaterials (BCP) with HA/TCP ratios of 50/50 and 30/70 were obtained from a pure HA biomaterial. The biomaterials which showed the same three-dimensional geometry were implanted into corticocancellous costal defects of sheep. In the specimens of all three biomaterials, abundant bone formation, mineral dissolution from the biomaterial scaffolds, and active cellular resorption of the scaffolds was present after 6 and 12 months.

View Article and Find Full Text PDF

The present study investigated the hypothesis that hydroxyapatite (HA), tricalcium phosphate (TCP), and a HA-gel coated on endosseous titanium (Ti) implants by spark discharging (SD) and dip coating would achieve predictable osseointegration without evident bioresorption of the coatings on the long term. A costal sheep model was used for the implantation of the HA/SD, HA/TCP/SD, and HA-gel/SD specimens, which were retrieved 6 and 12 months following implantation. HA and Ti coatings on implants obtained by conventional plasma spraying (HA/PS, Ti/PS) were used as controls.

View Article and Find Full Text PDF

Grafting of the maxillary sinus is an established treatment modality to provide sufficient bone for the fixation of dental implants. We stated the hypothesis that the porous fluorohydroxyapatitic (FHA) biomaterial FRIOS Algipore could be used as a suitable biomaterial for sinus grafting in severely atrophic maxillae. To investigate the accuracy of our hypothesis, 69 trephine specimens from 26 patients who received maxillary sinus grafting with FRIOS Algipore were retrieved during the installation of dental implants.

View Article and Find Full Text PDF

This case report is focused on the histologic findings of bone tissue supplied with two different hydroxyapatites (HAs) used for maxillary sinus floor grafting in the same patient after various healing intervals. An insufficient unilateral sinus floor grafting with Bio-Oss biomaterial was followed by an additional grafting procedure with Algipore biomaterial performed 4 years later. Bone samples obtained during second-stage dental implantation contained the interesting combination of Bio-Oss, a bovine anorganic bone substitute, and Algipore, a porous algae-derived HA, in close vicinity, yet after different healing periods.

View Article and Find Full Text PDF