High-throughput amplicon sequencing of six biomass samples from a full-scale anaerobic reactor at a Norwegian wood and pulp factory using Biothane Biobed Expanded Granular Sludge Bed (EGSB) technology during start-up and first year of operation was performed. A total of 106,166 16S rRNA gene sequences (V3-V5 region) were obtained. The number of operational taxonomic units (OTUs) ranged from 595 to 2472, and a total of 38 different phyla and 143 families were observed.
View Article and Find Full Text PDFThe aim of this study was to collect and identify airborne bacteria in Norway, Sweden and Finland and to compare three different technologies for identifying collected airborne bacterial isolates: the "gold standard" method 16S rDNA sequencing, MALDI-TOF MS using the MALDI Biotyper 2.0 and the MIDI Sherlock Microbial Identification System (MIDI MIS system). Airborne bacteria were collected during three different periods from May to October 2009 using air sampling directly on agar plates.
View Article and Find Full Text PDFLegionella pneumophila were previously identified in the aeration ponds (up to 10(10) CFU/L) of a biological wastewater treatment plant at Borregaard Ind. Ltd., Sarpsborg, Norway, and in air samples (up to 3300 CFU/m(3)) collected above the aeration ponds.
View Article and Find Full Text PDFTransport of ballast water is one major factor in the transmission of aquatic organisms, including pathogenic bacteria. The IMO-guidelines of the Convention for the Control and Management of Ships' Ballast Water and Sediments, states that ships are to discharge <1 CFU per 100 ml ballast water of toxigenic Vibrio cholerae, emphasizing the need to establish test methods. To our knowledge, there are no methods sensitive and rapid enough available for cholera surveillance of ballast water.
View Article and Find Full Text PDFLegionella was detected in aeration ponds (biological treatment plant) at Borregaard Ind. Ltd., Norway, and in air samples harvested directly above these ponds.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
November 2009
We report a multiplatform real-time polymerase chain reaction methodology based on genes encoding for the regulatory toxR activator and enterotoxin A protein to determine enterotoxigenic Vibrio cholerae types from other vibrios. This assay, which was successfully validated on a collection of 87 bacterial strains, including 63 representatives of V. cholerae and 8 noncholera vibrios provides a rapid tool for detection and identification of cholera.
View Article and Find Full Text PDFVibrio cholerae is the etiological agent of cholera and may be used in bioterror actions due to the easiness of its dissemination, and the public fear for acquiring the cholera disease. A simple and highly discriminating method for connecting clinical and environmental isolates of V. cholerae is needed in microbial forensics.
View Article and Find Full Text PDFThe genetic distribution of 295 Bacillus cereus group members has been investigated by using a modified Multilocus Sequence Typing method (MLST). By comparing the nucleic acid sequence of the adk gene fragment, isolates of B. cereus group members most related to B.
View Article and Find Full Text PDFA multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V.
View Article and Find Full Text PDFA rapid sonication method for lysis of Gram-positive bacteria was evaluated for use in combination with quantitative real-time polymerase chain reaction (PCR) analyses for detection. Other criteria used for evaluation of lysis were microscopic cell count, colony forming units (cfu), optical density at 600 nm and total yield of DNA measured by PicoGreen fluorescence. The aim of this study was complete disruption of cellular structures and release of DNA without the need for lysing reagents and time-consuming sample preparation.
View Article and Find Full Text PDF