Tissue Eng Part C Methods
September 2024
Synthetic hydroxyapatite (HA) is a widely studied bioceramic for bone tissue engineering (BTE) due to its similarity to the mineral component of bone. As bone mineral contains various ionic substitutions that play a crucial role in bone metabolism, the bioactivity of HA can be improved by adding small amounts of physiologically relevant ions into its crystal structure, with silicate-substituted HA (Si-HA) showing particularly promising results. Nevertheless, it remains unclear how distinct material characteristics influence the bioactivity due to the intertwined nature of surface properties.
View Article and Find Full Text PDFBone tissue engineering (BTE) aims to improve the healing of bone fractures using scaffolds that mimic the native extracellular matrix. For successful bone regeneration, scaffolds should promote simultaneous bone tissue formation and blood vessel growth for nutrient and waste exchange. However, a significant challenge in regenerative medicine remains the development of grafts that can be vascularized successfully.
View Article and Find Full Text PDFFluorescent nanodiamonds (FNDs) are promising nanoprobes, owing to their stable and magnetosensitive fluorescence. Therefore they can probe properties as magnetic resonances, pressure, temperature or strain. The unprecedented sensitivity of diamond defects can detect the faint magnetic resonance of a single electron or even a few nuclear spins.
View Article and Find Full Text PDF