The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.
View Article and Find Full Text PDFThe treatment of toxic nitrophenols in industrial wastewater is urgently needed from environmental, health, and economic points of view. The current study addresses the synthesis of the crosslinked vinyl polymer poly(acrylonitrile--2-acrylamido-2-methylpropane sulfonic acid) (poly(AN--AMPS)) through free radical copolymerization techniques using acrylonitrile (AN) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomers with different ratios and potassium persulfate (KPS) as an initiator in an aqueous medium. The prepared copolymer was utilized as a supporting matrix for silver nanoparticles (AgNPs) the chemical reduction of silver nitrate within the copolymer framework.
View Article and Find Full Text PDFSemiconductor materials based on metal high crosslinked-vinyl polymer composites were prepared through loading of Pd(OAc) on both Poly(ethylene-1,2-diyl dimethacrylate) (poly(EDMA)) and poly(ethylene-1,2-diyl dimethacrylate-co-methyl methacrylate) (Poly(EDMA-co-MMA)). The thermochemical properties for both poly(EDMA) and poly(EDMA-co-MMA) were investigated by thermal gravimetric analysis TGA technique. The dielectric permittivity, AC electrical conductivity and conduction mechanism for all the prepared polymers and their Pd(OAc) composites were studied.
View Article and Find Full Text PDF