Publications by authors named "Elsasser S"

ChIP-seq is a widely used technique for studying histone post-translational modifications and DNA-binding proteins. DNA fragments associated with a specific protein or histone modification epitope are captured by using antibodies, sequenced and mapped to a reference genome. Albeit versatile and popular, performing many parallel ChIP-seq experiments to compare different conditions, replicates and epitopes is laborious, is prone to experimental variation and does not allow quantitative comparisons unless adequate spike-in chromatin is included.

View Article and Find Full Text PDF

The sodium potassium pump, Na,K-ATPase (NKA), is an integral plasma membrane protein, expressed in all eukaryotic cells. It is responsible for maintaining the transmembrane Na gradient and is the major determinant of the membrane potential. Self-interaction and oligomerization of NKA in cell membranes has been proposed and discussed but is still an open question.

View Article and Find Full Text PDF

Stop codon suppression using dedicated tRNA/aminoacyl-tRNA synthetase (aaRS) pairs allows for genetically encoded, site-specific incorporation of non-canonical amino acids (ncAAs) as chemical handles for protein labeling and modification. Here, we demonstrate that piggyBac-mediated genomic integration of archaeal pyrrolysine tRNA (tRNA)/pyrrolysyl-tRNA synthetase (PylRS) or bacterial tRNA/aaRS pairs, using a modular plasmid design with multi-copy tRNA arrays, allows for homogeneous and efficient genetically encoded ncAA incorporation in diverse mammalian cell lines. We assess opportunities and limitations of using ncAAs for fluorescent labeling applications in stable cell lines.

View Article and Find Full Text PDF

Proteins are typically targeted to the proteasome for degradation through the attachment of ubiquitin chains and the proteasome initiates degradation at a disordered region within the target protein. Yet some proteins with ubiquitin chains and disordered regions escape degradation. Here we investigate how the position of the ubiquitin chain on the target protein relative to the disordered region modulates degradation and show that the distance between the two determines whether a protein is degraded efficiently.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using amber suppression to integrate nonnatural chemical groups into proteins in living cells, utilizing the pyrrolysine-tRNA/Pyrrolysine-tRNA synthetase pair from Methanosarcina mazei.
  • The research introduces a modular plasmid system for creating stable mammalian cell lines and details a method for generating CRISPR-Cas9 knock-in cell lines to enhance this process.
  • The approach involves targeting the PylT/RS expression cassette to the AAVS1 safe harbor locus in human cells, enabling efficient amber suppression for incorporating novel amino acids into proteins.
View Article and Find Full Text PDF

DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains.

View Article and Find Full Text PDF

The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation.

View Article and Find Full Text PDF

DNA methylation (5-methylcytosine (5mC)) is critical for genome stability and transcriptional regulation in mammals. The discovery that ten-eleven translocation (TET) proteins catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized our perspective on the complexity and regulation of DNA modifications. However, to what extent the regulatory functions of TET1 can be attributed to its catalytic activity remains unclear.

View Article and Find Full Text PDF

The first lineage choice in human embryo development separates trophectoderm from the inner cell mass. Naïve human embryonic stem cells are derived from the inner cell mass and offer possibilities to explore how lineage integrity is maintained. Here, we discover that polycomb repressive complex 2 (PRC2) maintains naïve pluripotency and restricts differentiation to trophectoderm and mesoderm lineages.

View Article and Find Full Text PDF

Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites.

View Article and Find Full Text PDF
Article Synopsis
  • TDP-43 is a protein linked to diseases like ALS and frontotemporal lobar degeneration, playing a key role in RNA processing and forming harmful aggregates.
  • Research showed that acetylation at specific lysine positions (K84 and K136) negatively impacts TDP-43's nuclear import and RNA binding, leading to its phase separation and aggregation.
  • The study highlighted that sirtuin-1 can deacetylate K136-acetylated TDP-43, potentially reducing its aggregation, which hints at possible regulatory pathways for TDP-43-related diseases.
View Article and Find Full Text PDF

The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi).

View Article and Find Full Text PDF

Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an efficient method for incorporating such chemical handles into proteins on the ribosome, in which noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide in response to an amber (UAG) stop codon.

View Article and Find Full Text PDF

Single-stranded genomic DNA can fold into G-quadruplex (G4) structures or form DNA:RNA hybrids (R loops). Recent evidence suggests that such non-canonical DNA structures affect gene expression, DNA methylation, replication fork progression and genome stability. When and how G4 structures form and are resolved remains unclear.

View Article and Find Full Text PDF

This paper aims to help policy makers with a characterization of the intrinsic value of biodiversity and its role as a critical foundation for sustainable development, human health, and well-being. Our objective is to highlight the urgent need to overcome economic, disciplinary, national, cultural, and regional barriers, in order to work out innovative measures to create a sustainable future and prevent the mutual extinction of humans and other species. We emphasize the pervasive neglect paid to the cross-dependency of planetary health, the health of individual human beings and other species.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC) technology has revolutionized studies on human biology. A wide range of cell types and tissue models can be derived from hiPSCs to study complex human diseases. Here, we use PiggyBac-mediated transgenesis to engineer hiPSCs with an expanded genetic code.

View Article and Find Full Text PDF

Eukaryotic initiation factor 4A-III (eIF4A3), a core helicase component of the exon junction complex, is essential for splicing, mRNA trafficking, and nonsense-mediated decay processes emerging as targets in cancer therapy. Here, we unravel eIF4A3's tumor-promoting function by demonstrating its role in ribosome biogenesis (RiBi) and p53 (de)regulation. Mechanistically, eIF4A3 resides in nucleoli within the small subunit processome and regulates rRNA processing via R-loop clearance.

View Article and Find Full Text PDF

Serological testing is essential to curb the consequences of the COVID-19 pandemic. However, most assays are still limited to single analytes and samples collected within healthcare. Thus, we establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS).

View Article and Find Full Text PDF

Short ORFs (sORFs), that is, occurrences of a start and stop codon within 100 codons or less, can be found in organisms of all domains of life, outnumbering annotated protein-coding ORFs by orders of magnitude. Even though functional proteins smaller than 100 amino acids are known, the coding potential of sORFs has often been overlooked, as it is not trivial to predict and test for functionality within the large number of sORFs. Recent advances in ribosome profiling and mass spectrometry approaches, together with refined bioinformatic predictions, have enabled a huge leap forward in this field and identified thousands of likely coding sORFs.

View Article and Find Full Text PDF

RT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP.

View Article and Find Full Text PDF

Genetically encoded fluorescent tags for visualization of proteins in living cells add six to several hundred amino acids to the protein of interest. While suitable for most proteins, common tags easily match and exceed the size of microproteins of 60 amino acids or less. The added molecular weight and structure of such fluorescent tag may thus significantly affect biophysical and biochemical properties of microproteins.

View Article and Find Full Text PDF

Nucleosome turnover concomitant with incorporation of the replication-independent histone variant H3.3 is a hallmark of regulatory regions in the animal genome. Nucleosome turnover is known to be universally linked to DNA accessibility and histone acetylation.

View Article and Find Full Text PDF

The pyrrolysyl-tRNA/pyrrolysyl-tRNA synthetase (PylT/RS) pair from the archaeon Methanosarcina mazei (Mma) is widely used in protein engineering to site-specifically introduce noncanonical amino acids (ncAAs) through nonsense codon suppression. Here, we engineer the PylT/RS pair encoded by Methanogenic archaeon ISO4-G1 (G1) to be orthogonal to Mma PylT/RS and alter the G1 PylRS active site to accept a complementary ncAA spectrum. We combine the resulting mutual orthogonal pairs for site-specific dual ncAA incorporation of two lysine analogs with high selectivity and efficiency.

View Article and Find Full Text PDF