Publications by authors named "Elsa Zacco"

Investigating the binding between proteins and aptamers, such as peptides or RNA molecules, is of crucial importance both for understanding the molecular mechanisms that regulate cellular activities and for therapeutic applications in several pathologies. Here, a new computational procedure, employing mainly docking, clustering analysis, and molecular dynamics simulations, was designed to estimate the binding affinities between a protein and some RNA aptamers, through the investigation of the dynamical behavior of the predicted molecular complex. Using the state-of-the-art software catRAPID, we computationally designed a set of RNA aptamers interacting with the TAR DNA-binding protein 43 (TDP-43), a protein associated with several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Background: Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43.

Methods: Here we examine tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS).

Results: Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions.

View Article and Find Full Text PDF

This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences.

View Article and Find Full Text PDF
Article Synopsis
  • Protein misfolding and aggregation into complex structures are common in neurodegenerative diseases, affecting conditions like Parkinson's.
  • Single-molecule techniques have improved the study of these rare protein aggregates, but they often require tagged proteins or non-specific dyes.
  • The researchers developed a method using high-affinity antibodies and advanced microscopy to specifically detect α-synuclein aggregates in low concentrations within biological samples.
View Article and Find Full Text PDF

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known.

View Article and Find Full Text PDF

The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed five mutants of such a peptide with a modulated affinity.

View Article and Find Full Text PDF

Biomolecular condensates serve as membrane-less compartments within cells, concentrating proteins and nucleic acids to facilitate precise spatial and temporal orchestration of various biological processes. The diversity of these processes and the substantial variability in condensate characteristics present a formidable challenge for quantifying their molecular dynamics, surpassing the capabilities of conventional microscopy. Here, we show that our single-photon microscope provides a comprehensive live-cell spectroscopy and imaging framework for investigating biomolecular condensation.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, a virus responsible for COVID-19, interacts with host cell proteins to both inhibit and promote its own replication, yet many of these interactions remain unclear.
  • Researchers used advanced techniques to identify host proteins that specifically bind to crucial regions of the SARS-CoV-2 RNA, focusing on a protein called PUS7.
  • Their findings reveal significant post-transcriptional modifications in the viral RNA and suggest that understanding these interactions could lead to new treatment strategies for COVID-19.
View Article and Find Full Text PDF
Article Synopsis
  • - Nucleic acids, particularly RNA, can either help or hinder how proteins aggregate, depending on the specific conditions they are in.
  • - The study used computational methods to analyze properties of regions in proteins that are involved in amyloid aggregation, finding that outer regions of these proteins are disordered and tend to interact with nucleic acids.
  • - Experimental tests with alpha-synuclein proteins showed that adding RNA sped up aggregation, especially with a mutant version that has a stronger affinity for RNA, suggesting a common link between RNA sequestration and protein aggregation.
View Article and Find Full Text PDF

Protein-RNA interactions regulate gene expression and cellular functions at transcriptional and post-transcriptional levels. For this reason, identifying the binding partners of an RNA of interest remains of high importance to unveil the mechanisms behind many cellular processes. However, RNA molecules might interact transiently and dynamically with some RNA-binding proteins (RBPs), especially with non-canonical ones.

View Article and Find Full Text PDF
Article Synopsis
  • Protein misfolding and aggregation into structures like oligomers and fibrils are linked to various neurodegenerative diseases.
  • Traditional methods for studying these aggregates often lack specificity and rely on labeled proteins or non-specific stains.
  • The researchers developed a new technique using a high-affinity antibody with unique fluorophores and advanced microscopy to specifically identify and analyze α-synuclein aggregates in low concentrations, relevant to biological samples.
View Article and Find Full Text PDF

The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.

View Article and Find Full Text PDF

Aptamers are artificial oligonucleotides binding to specific molecular targets. They have a promising role in therapeutics and diagnostics but are often difficult to design. Here, we exploited the catRAPID algorithm to generate aptamers targeting TAR DNA-binding protein 43 (TDP-43), whose aggregation is associated with Amyotrophic Lateral Sclerosis.

View Article and Find Full Text PDF

SINEUPs are a novel class of natural and synthetic non-coding antisense RNA molecules able to increase the translation of a target mRNA. They present a modular organization comprising an unstructured antisense target-specific domain, which sets the specificity of each individual SINEUP, and a structured effector domain, which is responsible for the translation enhancement. In order to design a fully functional transcribed SINEUP for therapeutics applications, SINEUP RNAs were synthesized with a variety of chemical modifications and screened for their activity on endogenous target mRNA upon transfection.

View Article and Find Full Text PDF

Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the aggregate-associated diseases, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. In fact, although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known.

View Article and Find Full Text PDF

Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation.

View Article and Find Full Text PDF

Specific elements of viral genomes regulate interactions within host cells. Here, we calculated the secondary structure content of >2000 coronaviruses and computed >100 000 human protein interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genomic regions display different degrees of conservation.

View Article and Find Full Text PDF

The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold.

View Article and Find Full Text PDF

Self-assembly of proteins into amyloid fibrils is a hallmark of various diseases, including Alzheimer's disease (AD) and Type-2 diabetes Mellitus (T2DM). Aggregation of specific peptides, like Aβ42 in AD and hIAPP in T2DM, causes cellular dysfunction resulting in the respective pathology. While these amyloidogenic proteins lack sequence homology, they all contain aromatic amino acids in their hydrophobic core that play a major role in their self-assembly.

View Article and Find Full Text PDF
Article Synopsis
  • * Identifying the specific RNA sequences and structures that RBPs recognize is difficult due to the transient nature of these interactions and the complexity of many RBPs.
  • * This mini-review suggests a systematic workflow that combines in-cell experiments and advanced computational tools like catRAPID to accurately predict and validate RNA binding partners for newly discovered RBPs.
View Article and Find Full Text PDF

Epidemiological evidence shows an increased risk for developing Alzheimer's disease in people affected by diabetes, a pathology associated with increased hyperglycemia. A potential factor that could explain this link could be the role that sugars may play in both diseases under the form of glycation. Contrary to glycosylation, glycation is an enzyme-free reaction that leads to formation of toxic advanced glycation end-products (AGEs).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) presents with focal muscle weakness due to motor neuron degeneration that becomes generalized, leading to death from respiratory failure within 3-5 years from symptom onset. Despite the heterogeneity of aetiology, TDP-43 proteinopathy is a common pathological feature that is observed in >95% of ALS and tau-negative frontotemporal dementia (FTD) cases. TDP-43 is a DNA/RNA-binding protein that in ALS and FTD translocates from being predominantly nuclear to form detergent-resistant, hyperphosphorylated aggregates in the cytoplasm of affected neurons and glia.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are incurable motor neuron diseases associated with muscle weakness, paralysis and respiratory failure. Accumulation of TAR DNA-binding protein 43 (TDP-43) as toxic cytoplasmic inclusions is one of the hallmarks of these pathologies. TDP-43 is an RNA-binding protein responsible for regulating RNA transcription, splicing, transport and translation.

View Article and Find Full Text PDF

The TAR DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein implicated in gene regulation and RNA processing and shuffling. It is a ribonuclear protein that carries out most of its functions by binding specific nucleic acid sequences with its two RNA-recognition motifs, RRM1 and RRM2. TDP-43 has been identified in toxic cytosolic inclusions in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongkd18trvgidmgtdb2oi77vcduk10iqbl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once