The scientific community has long benefited from the opportunities provided by data reuse. Recognizing the need to identify the challenges and bottlenecks to reuse in the agricultural research community and propose solutions for them, the data reuse working group was started within the AgBioData consortium framework. Here, we identify the limitations of data standards, metadata deficiencies, data interoperability, data ownership, data availability, user skill level, resource availability, and equity issues, with a specific focus on agricultural genomics research.
View Article and Find Full Text PDFLarge-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization.
View Article and Find Full Text PDFPlants (Basel)
November 2022
Genome-wide association studies (GWAS) have allowed the identification of different loci associated with primary root (PR) growth, and Arabidopsis is an excellent model for these studies. The PR length is controlled by cell proliferation, elongation, and differentiation; however, the specific contribution of proliferation and differentiation in the control of PR growth is still poorly studied. To this end, we analyzed 124 accessions and used a GWAS approach to identify potential causal genomic regions related to four traits: PR length, growth rate, cell proliferation and cell differentiation.
View Article and Find Full Text PDFWith growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels.
View Article and Find Full Text PDFThe DUF642 protein family is found exclusively in spermatophytes and is represented by 10 genes in Arabidopsis and in most of the 24 plant species analyzed to date. Even though the primary structure of DUF642 proteins is highly conserved in different spermatophyte species, studies of their expression patterns in Arabidopsis have shown that the spatial-temporal expression pattern for each gene is specific and consistent with the phenotypes of the mutant plants studied so far. Additionally, the regulation of DUF642 gene expression by hormones and environmental stimuli was specific for each gene, showing both up- and down-regulation depending of the analyzed tissue and the intensity or duration of the stimuli.
View Article and Find Full Text PDF