Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer-solvent interactions can lead to drastically different behavior of the polymer-surface adhesion.
View Article and Find Full Text PDFBased on a low-temperature scanning tunneling microscopy study, we present a direct visualization of a cycloaddition reaction performed for some specific fluorinated maleimide molecules deposited on graphene. Up to now, it was widely admitted that such a cycloaddition reaction can not happen without pre-existing defects. However, our study shows that the cycloaddition reaction can be carried out on a defect-free basal graphene plane at room temperature.
View Article and Find Full Text PDF