Publications by authors named "Elsa Maymo-Masip"

Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss.

View Article and Find Full Text PDF

Background And Aims: Crohn's disease [CD] is characterised by the expansion of mesenteric adipose tissue [MAT], named creeping fat [CF], which seems to be directly related to disease activity. Adipose-stem cells [ASCs] isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment, that could serve as molecular markers.

View Article and Find Full Text PDF

Background: Metabolic reprogramming and abnormal glucose metabolism are hallmarks of head and neck squamous cell carcinoma (HNSCC). Certain oncogenes can promote cancer-related metabolic changes, but understanding their crosstalk in HNSCC biology and treatment is essential for identifying predictive biomarkers and developing target therapies.

Methods: We assessed the value of survivin/BIRC5 as a radioresistance factor potentially modulated by glucose for predicting therapeutic sensitivity and prognosis of HNSCC in a cohort of 32 patients.

View Article and Find Full Text PDF

White adipose tissue (WAT) explants culture allows the study of this tissue ex vivo, maintaining its structure and properties. Concurrently, isolating mature adipocytes facilitates research into fat cell metabolism and hormonal regulation. Here, we present a protocol for obtaining, isolating, and processing mature adipocytes, alongside the cultivation of WAT explants from humans and mice.

View Article and Find Full Text PDF

Objective: Succinate and succinate receptor 1 (SUCNR1) are linked to fibrotic remodeling in models of non-alcoholic fatty liver disease (NAFLD), but whether they have roles beyond the activation of hepatic stellate cells remains unexplored. We investigated the succinate/SUCNR1 axis in the context of NAFLD specifically in hepatocytes.

Methods: We studied the phenotype of wild-type and Sucnr1 mice fed a choline-deficient high-fat diet to induce non-alcoholic steatohepatitis (NASH), and explored the function of SUCNR1 in murine primary hepatocytes and human HepG2 cells treated with palmitic acid.

View Article and Find Full Text PDF

White adipose tissue/brown adipose tissue trans-differentiation is one of the main study targets for therapies against obesity and metabolic diseases. In recent years, numerous molecules able to induce such trans-differentiation have been identified; however, their effect in obesity therapies has not been as expected. In the present study, we investigated whether myo-inositol and its stereoisomer D-chiro-inositol could be involved in the browning of white adipose tissue.

View Article and Find Full Text PDF

Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status.

View Article and Find Full Text PDF

Dyslipidemia in gestational diabetes has been associated with worse perinatal outcomes. The ANGPTL3-4-8 axis regulates lipid metabolism, especially in the transition from fasting to feeding. In this study, we evaluated the response of ANGPTL3, 4, and 8 after the intake of a mixed meal in women with normal glucose tolerance and gestational diabetes, and we assessed their gene expressions in different placental locations.

View Article and Find Full Text PDF

Background: Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness.

View Article and Find Full Text PDF

Dysfunctional adipocyte precursors have emerged as key determinants for obesity- and aging-related inflammation, but the mechanistic basis remains poorly understood. Here, we explored the dysfunctional adipose tissue of elderly and obese individuals focusing on the metabolic and inflammatory state of human adipose-derived mesenchymal stromal cells (hASCs), and on sirtuins, which link metabolism and inflammation. Both obesity and aging impaired the differentiation potential of hASCs but had a different impact on their proliferative capacity.

View Article and Find Full Text PDF

Abnormal lipid metabolism is associated with gestational diabetes mellitus (GDM) and is observed in neonates with abnormal fetal growth. However, the underlying specific changes in the lipoprotein profile remain poorly understood. Thus, in the present study we used a novel nuclear magnetic resonance (NMR)-based approach to profile the umbilical cord serum lipoproteins.

View Article and Find Full Text PDF

Background: An environment of gestational diabetes mellitus (GDM) can modify the phenotype of stem cell populations differentially according to their placental localization, which can be useful to study the consequences for the fetus. We sought to explore the effect of intrauterine GDM exposure on the angiogenic properties of human amniotic membrane stem cells (hAMSCs).

Methods: We comprehensively characterized the angiogenic phenotype of hAMSCs isolated from 14 patients with GDM and 14 controls with normal glucose tolerance (NGT).

View Article and Find Full Text PDF

Preadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D).

View Article and Find Full Text PDF

Adipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity.

View Article and Find Full Text PDF

Our understanding of the interplay between human adipose tissue and the immune system is limited. The mesothelium, an immunologically active structure, emerged as a source of visceral adipose tissue. After investigating the mesothelial properties of human visceral and subcutaneous adipose tissue and their progenitors, we explored whether the dysfunctional obese and Crohn's disease environments influence the mesothelial/mesenchymal properties of their adipocyte precursors, as well as their ability to mount an immune response.

View Article and Find Full Text PDF

Crohn's disease (CD) is characterized by compromised immune tolerance to the intestinal commensal microbiota, intestinal barrier inflammation, and hyperplasia of creeping fat (CF) and mesenteric adipose tissue (AT), which seems to be directly related to disease activity. Gut microbiota dysbiosis might be a determining factor in CD etiology, manifesting as a low microbial diversity and a high abundance of potentially pathogenic bacteria. We tested the hypothesis that CF is a reservoir of bacteria through 16S-rRNA sequencing of several AT depots of patients with active and inactive disease and controls.

View Article and Find Full Text PDF

Background: Crohn's disease (CD) is characterized by persistent inflammation and ulceration of the small or large bowel, and expansion of mesenteric adipose tissue, termed creeping fat (CF). We previously demonstrated that human adipose-derived stem cells (hASCs) from CF of patients with CD exhibit dysfunctional phenotypes, including a pro-inflammatory profile, high phagocytic capacity, and weak immunosuppressive properties. Importantly, these phenotypes persist in patients in remission and are found in all adipose depots explored including subcutaneous fat.

View Article and Find Full Text PDF

Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case-control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring.

View Article and Find Full Text PDF

We aimed to explore the relationship between GLP-1 receptor (GLP-1R) expression in adipose tissue (AT) and incretin secretion, glucose homeostasis and weight loss, in patients with morbid obesity and type 2 diabetes undergoing bariatric surgery. RNA was extracted from subcutaneous (SAT) and visceral (VAT) AT biopsies from 40 patients randomized to metabolic gastric bypass, sleeve gastrectomy or greater curvature plication. Biochemical parameters, fasting plasma insulin, glucagon and area under the curve (AUC) of GLP-1 following a standard meal test were determined before and 1 year after bariatric surgery.

View Article and Find Full Text PDF

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages.

View Article and Find Full Text PDF

Background: A functional population of adipocyte precursors, termed adipose-derived stromal/stem cells (ASCs), is crucial for proper adipose tissue (AT) expansion, lipid handling, and prevention of lipotoxicity in response to chronic positive energy balance. We previously showed that obese human subjects contain a dysfunctional pool of ASCs. Elucidation of the mechanisms underlying abnormal ASC function might lead to therapeutic interventions for prevention of lipotoxicity by improving the adipogenic capacity of ASCs.

View Article and Find Full Text PDF

Crohn's disease (CD) is characterized by the expansion of mesenteric fat, also known as "creeping fat." We explored the plasticity and immune properties of adipose-derived stem cells (ASCs) in the context of CD as potential key players in the development of creeping fat. Mesenteric CD-derived ASCs presented a more proliferative, inflammatory, invasive, and phagocytic phenotype than equivalent cells from healthy donors, irrespective of the clinical stage.

View Article and Find Full Text PDF

Background And Objectives: Obesity and HIV-1/HAART-associated lipodystrophy syndrome (HALS) share clinical, pathological and mechanistic features. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine that plays an important role in obesity and related diseases. We sought to explore the relationship between HALS and circulating levels of soluble (s) TWEAK and its scavenger receptor sCD163.

View Article and Find Full Text PDF

Unlabelled: We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8 weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice.

View Article and Find Full Text PDF