The development of genomic and proteomic tools has enabled studies that begin to characterize the molecular targets of an effective host immune response to Mycobacterium tuberculosis, including understanding the specific immune responses associated with tuberculosis (TB) disease progression, disease resolution, and the development of latency. One application of such tools is the development of diagnostic reagents and assays useful as a test of cure. Such a test could be of considerable importance for the evaluation of new therapeutics.
View Article and Find Full Text PDFHealthy Indian adult volunteers, with or without a history of leishmaniasis, were evaluated for evidence of previous infection with Leishmania donovani based on the direct agglutination test (DAT). Three cohorts of 6 DAT-negative and 6 DAT-positive subjects were enrolled in an open-label, dose-escalating, uncontrolled clinical trial and received three injections of the LEISH-F1+MPL-SE vaccine (consisting of 5μg, 10μg, or 20μg recombinant Leishmania polyprotein LEISH-F1 antigen+25μg MPL®-SE adjuvant). The study injections were given subcutaneously on days 0, 28, and 56, and the subjects were followed through day 168 for safety and immunological endpoints.
View Article and Find Full Text PDFInnate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses.
View Article and Find Full Text PDFAdult patients with mucosal leishmaniasis (ML) were enrolled in a randomized, double-blind, placebo-controlled, dose-escalating clinical trial and were randomly assigned to receive three injections of either the LEISH-F1+MPL-SE vaccine (consisting of 5, 10, or 20 μg recombinant Leishmania polyprotein LEISH-F1 antigen+25 μg MPL(®)-SE adjuvant) (n=36) or saline placebo (n=12). The study injections were given subcutaneously on Days 0, 28, and 56, and the patients were followed through Day 336 for safety, immunological, and clinical evolution endpoints. All patients received standard chemotherapy with sodium stibogluconate starting on Day 0.
View Article and Find Full Text PDFDevelopment of a subunit vaccine for Mycobacterium tuberculosis (Mtb) depends on the identification of Ags that induce appropriate T cell responses. Using bioinformatics, we selected a panel of 94 Mtb genes based on criteria that included growth in macrophages, up- or down-regulation under hypoxic conditions, secretion, membrane association, or because they were members of the PE/PPE or EsX families. Recombinant proteins encoded by these genes were evaluated for IFN-gamma recall responses using PBMCs from healthy subjects previously exposed to Mtb.
View Article and Find Full Text PDFDetection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in peripheral blood of subjects vaccinated with an anthrax vaccine. PA-specific HLA class II-restricted T lymphocytes were isolated which displayed both TH1- and TH2-like characteristics, indicating heterogeneity of the lymphocyte lineage within the CD4+ response.
View Article and Find Full Text PDFNegative selection of self-reactive T-cells during thymic development, along with activation-induced cell death in peripheral lymphocytes, is designed to limit the expansion and persistence of autoreactive T-cells. Autoreactive T-cells are nevertheless present, both in patients with type 1 diabetes and in at-risk subjects. By using MHC class II tetramers to probe the T-cell receptor (TcR) specificity and avidity of GAD65 reactive T-cell clones isolated from patients with type 1 diabetes, we identified high-avidity CD4+ T-cells in peripheral blood, coexisting with low-avidity cells directed to the same GAD65 epitope specificity.
View Article and Find Full Text PDFThe activation requirements of autoreactive CD4(+) T-cells were investigated in GAD65-specific HLA-DR0401-restricted clones derived from a diabetic patient using major histocompatibility complex (MHC) class II tetramers (TMrs) as stimulating agents. Despite the fact that TMrs loaded with an immunodominant-altered GAD peptide (TMr-GAD) bound a limited number of T-cell receptors, they were capable of efficiently delivering activation signals. These signals ranged from the early steps of phospholipase C (PLC)-gamma(1) phosphorylation and Ca(2+) mobilization to more complex events, such as CD69 upregulation, cytokine mRNA transcription and secretion, and proliferation.
View Article and Find Full Text PDF