Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures.
View Article and Find Full Text PDFAlthough gastrointestinal complications are a common feature of patients with chronic kidney disease (CKD), the impact of uremia on bowel motility remains poorly understood. The present study was, therefore, designed to investigate the impact of uremia on gut motility. Kidney failure was induced in mice by chemical nephrectomy using an adenine diet (0.
View Article and Find Full Text PDFA series of PHPMA homopolymers and of mannose- and dimethylamino-functionalized copolymers, were prepared by RAFT polymerization and engaged in the preparation of oil-loaded nanocapsules using the "Shift'N'Go" process. Playing with the phase diagrams of both oil and homo- or copolymers afforded the preparation of functional camptothecin-loaded nanocapsules displaying tunable dimensions (90-350 nm), compositions and surface properties.
View Article and Find Full Text PDF