Publications by authors named "Elsa D M Hien"

Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context.

View Article and Find Full Text PDF

Transcription elongation is one of the most important processes in the cell. During RNA polymerase elongation, the folding of nascent transcripts plays crucial roles in the genetic decision. Bacterial riboswitches are prime examples of RNA regulators that control gene expression by altering their structure upon metabolite sensing.

View Article and Find Full Text PDF

Riboswitches are RNA-regulating elements that mostly rely on structural changes to modulate gene expression at various levels. Recent studies have revealed that riboswitches may control several regulatory mechanisms cotranscriptionally, i.e.

View Article and Find Full Text PDF

Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)-dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes.

View Article and Find Full Text PDF

Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation.

View Article and Find Full Text PDF