Publications by authors named "Elsa C Mercado"

In the last 10 years, Salmonella Heidelberg has been extensively isolated from poultry in several countries. In this context, molecular characterization is essential to understand whether the strains have entered the farms from a single or several sources. Thus, the aim of this study was to determine the genetic relationship and antimicrobial susceptibility of S.

View Article and Find Full Text PDF

E. coli O157:H7 is a foodborne pathogen responsible for bloody diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). The objective of the present work was to evaluate the ability of colostral IgG obtained from Stx2-immunized cows to prevent against E.

View Article and Find Full Text PDF

Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.

View Article and Find Full Text PDF

Many animal and human pathogenic Gram-negative bacteria such as Salmonella, Yersinia, enterohemorrhagic Escherichia coli (EHEC), and enteropathogenic Escherichia coli (EPEC) possess a type III secretion system (TTSS) that is used to deliver virulence proteins directly into the host cell. Recent evidence has suggested that CoilA and CoilB, two synthetic peptides corresponding to coiled-coil domains of the translocator protein EspA, are effective in inhibiting the action of TTSS from EPEC. In the current study, the action of these coiled-coil peptides on the TTSS of EHEC O157:H7 and Citrobacter rodentium was examined.

View Article and Find Full Text PDF

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is the most prevalent EHEC serotype that has been recovered from patients with haemolytic uremic syndrome (HUS) worldwide. Vaccination of cattle, the main reservoir of EHEC O157:H7, could be a logical strategy to fight infection in humans. This study evaluated a vaccine based on the carboxyl-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and EspB, two key colonization factors of E.

View Article and Find Full Text PDF

Non-enterotoxin (CPE)-producing Clostridium perfringens type A has been associated with enteritis in calves. Recent evidence has suggested that a novel toxin, named beta2 (CPB2), is implicated in the pathogenesis of this disease, although there is little evidence supporting this. In the current study, the role of C.

View Article and Find Full Text PDF

Vegetable tannins are water-soluble polyphenolic compounds of varying molecular weights that occur abundantly in nature. The diet of many free-ranging wild animals contains significant amounts of tannins. Also, commercial tannins are used in animal industry as food additives to improve animal performance.

View Article and Find Full Text PDF

Mucosal vaccine formulations based on purified recombinant C280 gamma-Intimin and EspB (Escherichia coli secreted protein B) from enterohaemorragic E. coli co-administered with a pegylated derivative of the TLR2/6 agonist MALP-2 (macrophage-activating lipopeptide) as adjuvant were evaluated in BALB/c mice. After intranasal vaccination, strong humoral and cellular immune responses were observed against C280 gamma-Intimin and EspB.

View Article and Find Full Text PDF

Enterohemorrhagic Escherichia coli (EHEC) is the main cause of hemolytic-uremic syndrome, an endemic disease in Argentina which had an incidence in 2005 of 13.9 cases per 100,000 children younger than 5 years old. Cattle appear to be a major reservoir of EHEC, and a serological response to EHEC antigens has been demonstrated in natural and experimental infections.

View Article and Find Full Text PDF

Cattle are recognized as the major reservoir of STEC and the source of infection for human beings. Until recently, intervention strategies to decrease the contamination of meat products have been focused on the slaughter plant with the application of practices to reduce the contamination and proliferation of STEC. This has now changed following the development of intervention strategies in the farm.

View Article and Find Full Text PDF