Publications by authors named "Elsa Branco Lopes"

With global warming and rising energy demands, it is important now than ever to transit to renewable energy systems. Thermoelectric (TE) devices can present a feasible alternative to generate clean energy from waste heat. However, to become attractive for large-scale applications, such devices must be cheap, efficient, and based on ecofriendly materials.

View Article and Find Full Text PDF

High electrical and thermal contact resistances can ruin a thermoelectric device's performance, and thus, the use of effective diffusion barriers and optimization of joining methods are crucial to implement them. In this work, the use of carbon as a CuMnSbS tetrahedrite diffusion barrier, and the effectiveness of different fixation techniques for the preparation of tetrahedrite/copper electrical contacts were investigated. Contacts were prepared using as jointing materials Ni and Ag conductive paints and resins, and a Zn-5wt% Al solder.

View Article and Find Full Text PDF

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-AsTe and β-AsTe binary phases and the previously unreported AsTe phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements.

View Article and Find Full Text PDF

Metastable β-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K.

View Article and Find Full Text PDF

This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties.

View Article and Find Full Text PDF