We train prediction and survival models using multi-omics data for disease risk identification and stratification. Existing work on disease prediction focuses on risk analysis using datasets of individual data types (metabolomic, genomics, demographic), while our study creates an integrated model for disease risk assessment. We compare machine learning models such as Lasso Regression, Multi-Layer Perceptron, XG Boost, and ADA Boost to analyze multi-omics data, incorporating ROC-AUC score comparisons for various diseases and feature combinations.
View Article and Find Full Text PDF