Publications by authors named "Elsa Arias-Barrau"

The process of fatty acid transport across the plasma membrane occurs by several mechanisms that involve distinct membrane-bound and membrane-associated proteins and enzymes. Among these are the fatty acid transport proteins (FATP) and long-chain acyl CoA synthetases (Acsl). Previous studies in yeast and adipocytes have shown FATP and Acsl form a physical complex at the plasma membrane and are required for fatty acid transport, which proceeds through a coupled process-linking transport with metabolic activation termed vectorial acylation.

View Article and Find Full Text PDF

One principal process driving fatty acid transport is vectorial acylation, where fatty acids traverse the membrane concomitant with activation to CoA thioesters. Current evidence is consistent with the proposal that specific fatty acid transport (FATP) isoforms alone or in concert with specific long chain acyl CoA synthetase (Acsl) isoforms function to drive this energy-dependent process. Understanding the details of vectorial acylation is of particular importance as disturbances in lipid metabolism many times leads to elevated levels of circulating free fatty acids, which in turn increases fatty acid internalization and ectopic accumulation of triglycerides.

View Article and Find Full Text PDF

These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform.

View Article and Find Full Text PDF

Functional analyses of the different proteins involved in the synthesis and accumulation of polyhydroxyalkanoates (PHAs) in P. putida U were performed using a mutant in which the pha locus had been deleted (PpUDeltapha). These studies showed that: (i) Pha enzymes cannot be replaced by other proteins in this bacterium, (ii) the transformation of PpDeltapha with a plasmid containing the locus pha fully restores the synthesis of bioplastics, (iii) the transformation of PpDeltapha with a plasmid harbouring the gene encoding the polymerase PhaC1 (pMCphaC1) permits the synthesis of polyesters (even in absence of phaC2ZDFI); however, in this strain (PpUDeltapha-pMCphaC1) the number of PHAs granules was higher than in the wild type, (iv) the expression of phaF in PpUDeltapha-pMCphaC1 restores the original phenotype, showing that PhaF is involved in the coalescence of the PHAs granules.

View Article and Find Full Text PDF

The gene (acs) encoding the acetyl-CoA synthetase (Acs) in Pseudomonas putida U has been cloned, sequenced and expressed in different microbes. The protein has been purified and characterized from a biochemical, structural and evolutionary point of view. Disruption or deletion of acs handicapped the bacterium for growth in a chemically defined medium containing acetate; this ability was regained when P.

View Article and Find Full Text PDF

A genetically engineered strain of Pseudomonas putida U designed for the identification of new therapeutic herbicides has been obtained. In this bacterium, deletion of the homogentisate gene cluster (hmgRABC) confers upon this mutant huge biotechnological possibilities since it can be used: (i) as a target for testing new specific herbicides (p-hydroxy-phenylpyruvate dioxygenase inhibitors); (ii) to identify new therapeutic drugs-effective in the treatment of alkaptonuria and other related tyrosinemia - and (iii) as a source of homogentisic acid in a plant-bacterium association.

View Article and Find Full Text PDF

The complete catabolic pathway involved in the assimilation of 3-hydroxyphenylacetic acid (3-OH-PhAc) in Pseudomonas putida U has been established. This pathway is integrated by the following: (i) a specific route (upper pathway), which catalyzes the conversion of 3-OH-PhAc into 2,5-dihydroxyphenylacetic acid (2,5-diOH-PhAc) (homogentisic acid, Hmg), and (ii) a central route (convergent route), which catalyzes the transformation of the Hmg generated from 3-OH-PhAc, l-Phe, and l-Tyr into fumarate and acetoacetate (HmgABC). Thus, in a first step the degradation of 3-OH-PhAc requires the uptake of 3-OH-PhAc by means of an active transport system that involves the participation of a permease (MhaC) together with phosphoenolpyruvate as the energy source.

View Article and Find Full Text PDF

Overexpression of the gene encoding the poly-3-hydroxy-n-phenylalkanoate (PHPhA) depolymerase (phaZ) in Pseudomonas putida U avoids the accumulation of these polymers as storage granules. In this recombinant strain, the 3-OH-acyl-CoA derivatives released from the different aliphatic or aromatic poly-3-hydroxyalkanoates (PHAs) are catabolized through the beta-oxidation pathway and transformed into general metabolites (acetyl-CoA, succinyl-CoA, phenylacetyl-CoA) or into non-metabolizable end-products (cinnamoyl-CoA). Taking into account the biochemical, pharmaceutical and industrial interest of some PHA catabolites (i.

View Article and Find Full Text PDF

We report an easy procedure for isolating chromosome-clustered genes. By following this methodology, the entire set of genes belonging to the phenylacetic acid (PhAc; 18-kb) pathway as well as those required for the synthesis and mobilization of different polyhydroxyalkanoates (PHAs; 6.4 kb) in Pseudomonas putida U were recovered directly from the bacterial chromosome and cloned into a plasmid for the first time.

View Article and Find Full Text PDF

Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P.

View Article and Find Full Text PDF