The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven.
View Article and Find Full Text PDFIn Belgium, the incorporation of phages into magistral preparations for human application has been permitted since 2018. The stability of such preparations is of high importance to guarantee quality and efficacy throughout treatments. We evaluated the ability to preserve infectivity of four different phages active against three different bacterial species in five different buffer and infusion solutions commonly used in medicine and biotechnological manufacturing processes, at two different concentrations (9 and 7 log pfu/mL), stored at 4 °C.
View Article and Find Full Text PDFRNA quality and quantity are important factors for ensuring the accuracy of gene expression analysis and other RNA-based downstream applications. Thus far, only a limited number of methodological studies have compared sample storage and RNA extraction procedures for human cells. We compared three commercially available RNA extraction kits, i.
View Article and Find Full Text PDFTo determine phage titers accurately, reproducibly and in a non-laborious and cost-effective manner, we describe the development of a qPCR platform for molecular quantification of five phages present in bacteriophage cocktail 2 (BFC2). We compared the performance of this molecular approach, with regard to quantification and reproducibility, with the standard culture-based double agar overlay method (DAO). We demonstrated that quantification of each of the five phages in BFC2 was possible by means of qPCR, without prior DNA extraction, but yields were significantly higher in comparison to DAO.
View Article and Find Full Text PDFAim: Candida species are known as opportunistic pathogens, and a possible cause of invasive infections. Because of their species-specific antimycotic resistance patterns, reliable techniques for their detection, quantification and identification are needed. We validated a DNA amplification method for direct detection of Candida spp.
View Article and Find Full Text PDFBackground: The aim of this study was to optimize quantitative (real-time) polymerase chain reaction (qPCR) assays for 8 major periodontal pathogens, i.e. Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Parvimonas micros, Porphyromonas gingivalis, Prevotella intermedia, Tanerella forsythia and Treponema denticola, and of the caries pathogen Streptococcus mutans.
View Article and Find Full Text PDFRapid identification of clinically important yeasts can facilitate the initiation of anti-fungal therapy, since susceptibility is largely species-dependent. We evaluated melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA) as an identification tool for distinguishing between 16 Candida spp., i.
View Article and Find Full Text PDFTyping of bacteria is important for monitoring newly emerging pathogens and for examining local outbreaks. We evaluated the randomly amplified polymorphic DNA technique in combination with melting curve analysis (McRAPD) of the amplified DNA fragments to genotype isolates from five Gram-negative species, i.e.
View Article and Find Full Text PDF