The nucleoside hydrolase of Trypanosoma vivax hydrolyzes the N-glycosidic bond of purine nucleosides. Structural and kinetic studies on this enzyme have suggested a catalytic role for a flexible loop in the vicinity of the active sites. Here we present the analysis of the role of this flexible loop via the combination of a proline scan of the loop, loop deletion mutagenesis, steady state and pre-steady state analysis, and x-ray crystallography.
View Article and Find Full Text PDFNucleoside hydrolases (NHs) are enzymes that catalyze the excision of the N-glycosidic bond in nucleosides to allow recycling of the nitrogenous bases. The fine details of the catalytic mechanism and the structural features imposing the substrate specificity of the various members of the NH family are still debated. Here we present the functional characterization of the Escherichia coli YbeK (RihA) protein as a pyrimidine nucleoside-preferring NH and its first crystal structure to 1.
View Article and Find Full Text PDFThe nucleoside hydrolase (NH) of the Trypanosoma vivax parasite catalyzes the hydrolysis of the N-glycosidic bond in ribonucleosides according to the following reaction: beta-purine (or pyrimidine) nucleoside + H(2)O --> purine (pyrimidine) base + ribose. The reaction follows a highly dissociative nucleophilic displacement reaction mechanism with a ribosyl oxocarbenium-like transition state. This paper describes the first pre-steady-state analysis of the conversion of a number of purine nucleosides.
View Article and Find Full Text PDFThe nucleoside hydrolases (NHs) are a family of nucleoside-modifying enzymes. They play an important role in the purine-salvage pathway of many pathogenic organisms which are unable to synthesize purines de novo. Although well characterized in protozoan parasites, their precise function and mechanism remain unclear in other species.
View Article and Find Full Text PDFNucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae and are considered as targets for drug design. We previously reported the first x-ray structure of an inosine-adenosine-guanosine preferring nucleoside hydrolase (IAG-NH) from Trypanosoma vivax (). Here we report the 2.
View Article and Find Full Text PDF