Publications by authors named "Els Blokland"

Background: Sex difference is an established risk factor for hematopoietic stem cell transplantation (HSCT)-related complications like graft versus host disease (GVHD). CD8pos cytotoxic T cells specific for Y chromosome-encoded minor Histocompatibility antigens (HY) play an important role therein. Prior to HSC donation, female donors may encounter HY antigens through fetomaternal or transmaternal cell flow, potentially leading to the induction of HY-specific cytotoxic or regulatory immune responses.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) is used for HSCT. It is known that UCB can comprise Ag-specific T cells. Here we question whether solely transmaternal cell flow may immunize UCB.

View Article and Find Full Text PDF

Bidirectional cell transfer during pregnancy frequently leads to postpartum persistence of allogeneic cells and alloimmune responses in both the mother and in her offspring. The life-long consequences of naturally acquired alloimmune reactivity are probably of importance for the outcome of allogeneic stem cell transplantation. We investigated the presence of CD8(pos) minor histocompatibility (H) antigen-specific cytotoxic T lymphocytes (T(CTL)) and CD8(pos) minor H antigen-specific T regulator cells (T(REG)) in peripheral blood cells obtained from 17 minor H antigen-disparate mother-offspring pairs.

View Article and Find Full Text PDF

Clinical responses of solid tumors after allogeneic human leukocyte antigen-matched stem cell transplantation (SCT) often coincide with severe graft-versus-host disease (GVHD). Targeting minor histocompatibility antigens (mHags) with hematopoiesis- and cancer-restricted expression, for example, HA-1, may allow boosting the antitumor effect of allogeneic SCT without risking severe GVHD. The mHag HA-1 is aberrantly expressed in cancers of most entities.

View Article and Find Full Text PDF

CTLs specific for hematopoietic system-restricted minor histocompatibility antigens (mHags) can serve as reagents for cellular adoptive immunotherapy after allogeneic stem cell transplantation (SCT). In the HLA-mismatched setting, CTLs specific for hematopoietic system-restricted mHags expressed solely by the non-self 'allo' HLA molecules could be used to treat relapse after HLA-mismatched SCT. The generation of mHag-specific allo-HLA-restricted CTLs requires antigen-presenting cells (APCs) expressing low numbers of endogenous peptides to avoid co-induction of undesired allo-HLA reactivities.

View Article and Find Full Text PDF

Hematopoietic system-specific miHAs are ideal targets for adoptive immunotherapy after allogeneic HLA (alloHLA)-matched SCT. Adoptive immunotherapy with cytotoxic T cells targeting hematopoietic system-specific miHAs restricted by alloHLA molecules is an attractive strategy to treat relapsed hematologic malignancies after HLA-mismatched SCT. As a proof of principle, we exploited 2 new strategies to generate alloHLA-A2-restricted miHA-specific T cells from HLA-A2(neg) donors using a HLA/miHA multimer-guided approach.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) specific for hematopoietic-restricted minor histocompatibility antigens (mHags) are important reagents for adoptive immunotherapy of relapsed leukemia after allogeneic stem cell transplantation. However, expansion of these CTLs to therapeutic numbers is often hampered by the limited supply of antigen-presenting cells (APCs). Therefore, we evaluated whether cell-sized latex beads coated with HLA/mHag complexes HLA-A2/HA-1 or HLA-A2/HA-2 and recombinant CD80 and CD54 molecules can replace professional APCs.

View Article and Find Full Text PDF

Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene.

View Article and Find Full Text PDF

Allogeneic stem cell transplantation (SCT) can induce curative graft-versus-tumor reactions in patients with hematological malignancies and solid tumors. The graft-versus-tumor reaction after human histocompatibility leukocyte antigen (HLA)-identical SCT is mediated by alloimmune donor T cells specific for polymorphic minor histocompatibility antigens (mHags). Among these, the mHag HA-1 was found to be restricted to the hematopoietic system.

View Article and Find Full Text PDF

Successful stem cell transplantation (SCT) across HLA barriers can be performed with cord blood, megadoses of stem cells, or with nonmyeloablative conditioning strategies. Because the HLA-mismatched transplants are often T-cell depleted, leukemia relapse rates are high. Treatment of relapsed leukemia after HLA-mismatched SCT is difficult.

View Article and Find Full Text PDF

T-cell receptors (TCRs) of a series of minor histocompatibility antigen (mHag) HA-1-specific cytotoxic T-cell (CTL) clones isolated from 3 unrelated patients have been shown to use the same BV6S4A2 segment with conserved amino acids in the CDR3Vbeta region. This suggests that different HA-1-specific TCRs interact similarly to the HA-1 antigen presented by the HLA-A2 molecule. The mHag HA-1 forms an immunogenic complex with HLA-A2 and induces strong alloimmune responses after stem cell transplantation (SCT).

View Article and Find Full Text PDF