Publications by authors named "Els Berns"

Article Synopsis
  • Cervical cancer is mostly caused by a virus called HPV, and people with advanced cancer have a higher chance of getting worse after treatment.
  • Scientists studied blood samples from 94 patients to see if a specific part of HPV in the blood could help predict if their cancer would come back.
  • They found that when the HPV DNA was cleared from the blood after treatment, patients had a better chance of staying cancer-free, while those who still had HPV DNA were more likely to relapse within about 10 months.
View Article and Find Full Text PDF

Background: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs.

Methods: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842].

View Article and Find Full Text PDF

Background: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality world wide and constitutes the third most common malignancy in women. The RAIDs consortium (http://www.raids-fp7.

View Article and Find Full Text PDF

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo.

View Article and Find Full Text PDF

The aim of this study was to determine an optimal workflow to detect mutations in baseline and longitudinal serum cell free DNA (cfDNA) from high-grade serous ovarian carcinomas (HGSOC) patients and to define whether mutations are suitable as biomarker for disease. was investigated in tissue and archived serum from 20 HGSOC patients by a next-generation sequencing (NGS) workflow alone or combined with digital PCR (dPCR). AmpliSeq™-focused NGS panels and customized dPCR assays were used for tissue DNA and longitudinal cfDNAs, and Oncomine NGS panel with molecular barcoding was used for baseline cfDNAs.

View Article and Find Full Text PDF

High grade serous ovarian cancer (HGSOC) is the most frequent type of ovarian cancer. Most patients have primary response to platinum-based chemotherapy but frequently relapse, which leads to patient death. A lack of well documented and characterized patient-derived HGSOC cell lines is so far a major barrier to define tumor specific therapeutic targets and to study the molecular mechanisms underlying disease progression.

View Article and Find Full Text PDF

Background: There is a lack of information as to which molecular processes, present at diagnosis, favor tumour escape from standard-of-care treatments in cervical cancer (CC). RAIDs consortium (www.raids-fp7.

View Article and Find Full Text PDF

Antiestrogen resistance in estrogen receptor positive (ER) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK.

View Article and Find Full Text PDF

Most high-grade serous ovarian cancer (HGSOC) patients develop recurrent disease after first-line treatment, frequently with fatal outcome. This work aims at studying the molecular biology of both primary and recurrent HGSOC. Gene expression profiles of matched primary and recurrent fresh-frozen tumor tissues from 66 HGSOC patients were obtained by RNA sequencing.

View Article and Find Full Text PDF

Introduction: While mutations in PIK3CA are most frequently (45%) detected in luminal breast cancer, downstream PI3K/AKT/mTOR pathway activation is predominantly observed in the basal subtype. The aim was to identify proteins activated in PIK3CA mutated luminal breast cancer and the clinical relevance of such a protein in breast cancer patients.

Materials And Methods: Expression levels of 171 signaling pathway (phospho-)proteins established by The Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) were in silico examined in 361 breast cancers for their relation with PIK3CA status.

View Article and Find Full Text PDF

Background: Proteogenomics is an emerging field at the intersection of genomics and proteomics. Many variant peptides corresponding to single nucleotide variations (SNVs) are associated with specific diseases. The aim of this study was to demonstrate the feasibility of proteogenomic-based variant peptide detection in disease models and clinical specimens.

View Article and Find Full Text PDF

Background: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality worldwide. CC pathogenesis is triggered when human papillomavirus (HPV) inserts into the genome, resulting in tumour suppressor gene inactivation and oncogene activation. Collecting tumour and blood samples is critical for identifying these genetic alterations.

View Article and Find Full Text PDF

DNA damage repair can lead to epigenetic changes. DNA mismatch repair proteins bind to platinum DNA adducts and at sites of DNA damage can recruit the DNA methylating enzyme DNMT1, resulting in aberrant methylation. We hypothesised that DNA damage repair during platinum-based chemotherapy may cause aberrant DNA methylation in normal tissues of patients such as blood.

View Article and Find Full Text PDF

Background: PIK3CA is the most frequent somatic mutated oncogene in estrogen receptor (ER) positive breast cancer. We previously observed an association between PIK3CA genotype and aromatase inhibitors (AI) treatment outcome. This study now evaluates whether expression of mRNAs and miRs are linked to PIK3CA genotype and are independently related to AI therapy response in order to define potential expressed biomarkers for treatment outcome.

View Article and Find Full Text PDF

The aim was to identify mutations in serum cell-free DNA (cfDNA) associated with disease progression on tamoxifen treatment in metastatic breast cancer (MBC). Sera available at start of therapy, during therapy and at disease progression were selected from 10 estrogen receptor (ER)-positive breast cancer patients. DNA from primary tumor and normal tissue and cfDNA from minute amounts of sera were analyzed by targeted next generation sequencing (NGS) of 45 genes (1,242 exons).

View Article and Find Full Text PDF

Our previous study demonstrated that high mRNA levels for Seven in Absentia Homolog 2 (SIAH2) correlated with high Estrogen Receptor (ER) mRNA levels and with longer progression-free survival (PFS) after first-line tamoxifen. Others showed high SIAH2 protein levels in ER-negative breast cancer associated with an unfavorable relapse-free survival. In the current study, we investigated SIAH2 protein expression to clarify the discrepancy between protein and mRNA findings and to determine its diagnostic value in breast cancer patients.

View Article and Find Full Text PDF

Purpose: APOBEC3 DNA cytosine deaminase family members normally defend against viruses and transposons. However, deregulated APOBEC3 activity causes mutations in cancer. Because of broad expression profiles and varying mixtures of normal and cancer cells in tumors, including immune cell infiltration, it is difficult to determine where different APOBEC3s are expressed.

View Article and Find Full Text PDF

Background: Molecular characterization of circulating tumor cells (CTC) is promising for personalized medicine. We aimed to identify a CTC gene expression profile predicting outcome to first-line aromatase inhibitors in metastatic breast cancer (MBC) patients.

Methods: CTCs were isolated from 78 MBC patients before treatment start.

View Article and Find Full Text PDF

Background: Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments.

View Article and Find Full Text PDF

We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets.

View Article and Find Full Text PDF

Background: Drug resistance hampers the efficient treatment of malignancies, including advanced stage ovarian cancer, which has a 5-year survival rate of only 30 %. The molecular processes underlying resistance have been extensively studied, however, not much is known about the involvement of microRNAs.

Methods: Differentially expressed microRNAs between cisplatin sensitive and resistant cancer cell line pairs were determined using microarrays.

View Article and Find Full Text PDF