Publications by authors named "Eloisi Caldas Lopes"

Alterations in protein-protein interaction networks are at the core of malignant transformation but have yet to be translated into appropriate diagnostic tools. We make use of the kinetic selectivity properties of an imaging probe to visualize and measure the epichaperome, a pathologic protein-protein interaction network. We are able to assay and image epichaperome networks in cancer and their engagement by inhibitor in patients' tumors at single-lesion resolution in real time, and demonstrate that quantitative evaluation at the level of individual tumors can be used to optimize dose and schedule selection.

View Article and Find Full Text PDF

CSCs are a population of self-renewing and tumor repopulating cells that have been observed in hematologic and solid tumors and their presence contributes to the development of drug resistance. The failure to eliminate CSCs with conventional therapy is one of major obstacles in the successful treatment of cancer. Several mechanisms have been described to contribute to CSCs chemoresistance properties that include the adoption of drug-efflux pumps, drug detoxification pathways, changes in metabolism, improved DNA repair mechanisms, and deregulated survival and pro-apoptotic pathways.

View Article and Find Full Text PDF

A series of novel tetrazole analogues of resveratrol were synthesized and evaluated for their anti-leukemic activity against an extensive panel of human cancer cell lines and against the MV4-11 AML cell line. These molecules were designed as drug-like derivatives of the resveratrol analogue DMU-212 and its cyano derivatives. Four compounds 8g, 8h, 10a and 10b exhibited LD values of 4.

View Article and Find Full Text PDF

The biological role of extracellular vesicles (EVs) in diffuse large B-cell lymphoma (DLBCL) initiation and progression remains largely unknown. We characterized EVs secreted by 5 DLBCL cell lines, a primary DLBCL tumor, and a normal control B-cell sample, optimized their purification, and analyzed their content. We found that DLBCLs secreted large quantities of CD63, Alix, TSG101, and CD81 EVs, which can be extracted using an ultracentrifugation-based method and traced by their cell of origin surface markers.

View Article and Find Full Text PDF

Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy.

View Article and Find Full Text PDF

DNA damaging agents cause rapid shrinkage of tumors and form the basis of chemotherapy for sarcomas despite significant toxicities. Drugs having superior efficacy and wider therapeutic windows are needed to improve patient outcomes. We used cell proliferation and apoptosis assays in sarcoma cell lines and benign cells; γ-H2AX expression, comet assay, immunoblot analyses and drug combination studies in vitro and in patient derived xenograft (PDX) models.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90).

View Article and Find Full Text PDF

Ewing sarcoma is characterized by multiple deregulated pathways that mediate cell survival and proliferation. Heat shock protein 90 (HSP90) is a critical component of the multi-chaperone complexes that regulate the disposition and activity of a large number of proteins involved in cell-signaling systems. We tested the efficacy of PU-H71, a novel HSP90 inhibitor in Ewing sarcoma cell lines, primary samples, benign mesenchymal stromal cells and hematopoietic stem cells.

View Article and Find Full Text PDF

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia.

View Article and Find Full Text PDF

B cell lymphoma 6 (BCL6), which encodes a transcriptional repressor, is a critical oncogene in diffuse large B cell lymphomas (DLBCLs). Although a retro-inverted BCL6 peptide inhibitor (RI-BPI) was recently shown to potently kill DLBCL cells, the underlying mechanisms remain unclear. Here, we show that RI-BPI induces a particular gene expression signature in human DLBCL cell lines that included genes associated with the actions of histone deacetylase (HDAC) and Hsp90 inhibitors.

View Article and Find Full Text PDF

JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability.

View Article and Find Full Text PDF

Background: The positron-emitting radionuclide (89)Zr (t(1/2) = 3.17 days) was used to prepare (89)Zr-radiolabeled trastuzumab for use as a radiotracer for characterizing HER2/neu-positive breast tumors. In addition, pharmacodynamic studies on HER2/neu expression levels in response to therapeutic doses of PU-H71 (a specific inhibitor of heat-shock protein 90 [Hsp90]) were conducted.

View Article and Find Full Text PDF

Unlabelled: The inhibition of heat shock protein 90 (Hsp90) has emerged as a promising antineoplastic strategy in diverse human malignancies. Hsp90 has been predicted to be involved in hepatocellular carcinoma (HCC) development; however, its role in hepatocarcinogenesis remains elusive. Using chemically distinctive Hsp90 inhibitors, we show that Hsp90 capacitates the aberrant expression and activity of crucial hepatocarcinogenesis-driving factors (e.

View Article and Find Full Text PDF

Triple-negative breast cancers (TNBCs) are defined by a lack of expression of estrogen, progesterone, and HER2 receptors. Because of the absence of identified targets and targeted therapies, and due to a heterogeneous molecular presentation, treatment guidelines for patients with TNBC include only conventional chemotherapy. Such treatment, while effective for some, leaves others with high rates of early relapse and is not curative for any patient with metastatic disease.

View Article and Find Full Text PDF

Heat shock protein (Hsp)90 is a chaperone with essential roles in maintaining transformation and in elevating the survival and growth potential of cancer cells. The recognition of Hsp90 as an important target in cancer therapy has prompted the identification, development and clinical translation of a large array of Hsp90 inhibitors. This review discusses the modalities that may interfere with this chaperone's function and describes the status of existing and emerging Hsp90 inhibitor classes.

View Article and Find Full Text PDF

Flavonoids are ubiquitous compounds present in plant extracts. They represent a major active component of the plant extract and are often known for their anti-inflammatory and anti-tumor effects. Previously, we demonstrated that Ligaria cuneifolia (R et P) Tiegh.

View Article and Find Full Text PDF

Previous findings from our laboratory demonstrated that when used at low concentration (0.1 microg ml(-1)), CsA as well as its analog PSC 833 were able to revert the MDR phenotype, while at high concentration (1 microg ml(-1)) were able to induce apoptosis. CsA induced apoptosis in leukemia cell lines sensitive (LBR-) and resistant to vincristine (LBR-V160), and doxorubicin (LBR-D160), while PSC 833 only induced apoptosis in vincristine-resistant cell line (LBR-V160).

View Article and Find Full Text PDF