Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits.
View Article and Find Full Text PDFMonitoring biomass of forages in experimental plots and livestock farms is a time-consuming, expensive, and biased task. Thus, non-destructive, accurate, precise, and quick phenotyping strategies for biomass yield are needed. To promote high-throughput phenotyping in forages, we propose and evaluate the use of deep learning-based methods and UAV (Unmanned Aerial Vehicle)-based RGB images to estimate the value of biomass yield by different genotypes of the forage grass species Jacq.
View Article and Find Full Text PDF