Publications by authors named "Eloise Ferreira"

Telomerase activity is directly affected by the laminin receptor precursor (LRP) protein, a highly conserved nonintegrin transmembrane receptor, which has been shown to have therapeutic effects in ageing, and age-related diseases. Recently, it has been found that overexpression of LRP-FLAG, by plasmid transfection, leads to a significant increase in telomerase activity in cell culture models. This may indicate that upregulation of LRP can be used to treat various age-related diseases.

View Article and Find Full Text PDF

The incidence and mortality rates of cancer are growing rapidly worldwide, with lung cancer being the most commonly occurring cancer in males. Human carcinomas circumvent the inhibitory pathways induced by DNA damage and senescence through the upregulation of telomerase activity. The 37 kDa/67 kDa laminin receptor (LRP/LR) is a cell surface receptor which plays a role in several cancer hallmarks, including metastasis, angiogenesis, cell viability maintenance, apoptotic evasion, and mediating telomerase activity.

View Article and Find Full Text PDF

Background: The 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in several tumourigenic-promoting processes including cellular viability maintenance and apoptotic evasion. Thus, the aim of this study was to assess the molecular mechanism of LRP/LR on apoptotic pathways in late stage (DLD-1) colorectal cancer cells upon siRNA-mediated down-regulation of LRP/LR.

Methods: siRNAs were used to down-regulate the expression of LRP/LR in DLD-1 cells which was assessed using western blotting and qPCR.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque and neurofibrillary tangle formation, respectively. Neurofibrillary tangles form as a result of the intracellular accumulation of hyperphosphorylated tau. Telomerase activity and levels of the human reverse transcriptase (hTERT) subunit of telomerase are significantly decreased in AD.

View Article and Find Full Text PDF

: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) represents the most common form of neurodegenerative disorders with only palliative treatments currently available. Amyloid plaque formation caused by amyloid-β (Aβ) aggregation and neurofibrillary tangle formation caused by hyperphosphorylated tau are hallmarks for the development of AD. The 37 kDa/67 kDa laminin receptor (LRP/LR) has been implicated in AD and tools blocking or downregulating LRP/LR impede amyloid plaque formation in vitro and in vivo.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta (Aβ) plaque and neurofibrillary tangle formation. We have shown , that knock-down and blockade of the 37 kDa/67 kDa Laminin Receptor (LRP/LR) resulted in reduced Aβ induced cytotoxicity and Aβ accumulation. In order to test the effect of blocking LRP/LR on Aβ formation and AD associated symptoms, AD transgenic mice received the anti-LRP/LR specific antibody, IgG1-iS18 through intranasal administration.

View Article and Find Full Text PDF

Background: Cancer remains one of the leading causes of death around the world, where incidence and mortality rates are at a constant increase. Tumourigenic cells are characteristically seen to over-express the 37 kDa/67 kDa laminin receptor (LRP/LR) compared to their normal cell counterparts. This receptor has numerous roles in tumourigenesis including metastasis, angiogenic enhancement, telomerase activation, cell viability and apoptotic evasion.

View Article and Find Full Text PDF

Unlabelled: The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively.

View Article and Find Full Text PDF

One of the core regulators of cellular aging are telomeres, repetitive DNA sequences at the ends of chromosomes that are maintained by the ribonucleoprotein DNA polymerase complex, telomerase. Recently, we demonstrated that knockdown of the 37kDa/ 67kDa laminin receptor (LRP/LR), a protein that promotes cell viability in tumorigenic and normal cells, reduces telomerase activity. We therefore hypothesized that upregulating LRP/LR might increase telomerase activity and impede aging.

View Article and Find Full Text PDF

The 37kDa/67kDa laminin receptor (LRP/LR) serves various physiological and pathological roles such as enhancing tumour-related processes including metastasis, angiogenesis, cellular viability and telomerase activation in cancerous cell lines. The present study investigates the effect of siRNA mediated downregulation of LRP/LR on pancreatic cancer (AsPC-1) and neuroblastoma (IMR-32) cells. MTT and BrdU assays revealed that siRNA mediated downregulation of LRP resulted in a significant reduction in cell viability and cell proliferation.

View Article and Find Full Text PDF

The 37kDa/67kDa laminin receptor (LRP/LR) is a non-integrin laminin receptor which is overexpressed in tumorigenic cells and supports progression of cancer via promoting metastasis, angiogenesis and telomerase activity and impediment of apoptosis. The present study investigates the role of LRP/LR on the metastatic potential of early (A375) and late (A375SM) stage malignant melanoma cells. Flow cytometry revealed that both early and late stage malignant melanoma cells display high levels of LRP/LR on their cell surface.

View Article and Find Full Text PDF

Background: Cancer has become a global burden due to its high incidence and mortality rates, with an estimated 14.1 million cancer cases reported worldwide in 2012 particularly as a result of metastasis. Metastasis involves two crucial steps: adhesion and invasion, and the non-integrin receptor; the 37-kDa/67-kDa laminin receptor precursor/ high affinity laminin receptor (LRP/LR) has been shown to be overexpressed on the surface of tumorigenic cells, thus being implicated in the enhancement of these two crucial steps.

View Article and Find Full Text PDF

Cancer is a highly complex disease that has become one of the leading causes of death globally. Metastasis, a major cause of cancer deaths, requires two crucial events known as adhesion and invasion. The 37kDa/67kDa laminin receptor [laminin receptor precursor/high-affinity laminin receptor (LRP/LR)] enhances these two steps, consequently aiding in cancer progression.

View Article and Find Full Text PDF

Cancer has become a major problem worldwide due to its increasing incidence and mortality rates. Both the 37kDa/67kDa laminin receptor (LRP/LR) and telomerase are overexpressed in cancer cells. LRP/LR enhances the invasiveness of cancer cells thereby promoting metastasis, supporting angiogenesis and hampering apoptosis.

View Article and Find Full Text PDF

The neuronal perturbations in Alzheimer's disease are attributed to the formation of extracellular amyloid-β (Aβ) neuritic plaques, composed predominantly of the neurotoxic Aβ42 isoform. Although the plaques have demonstrated a role in synaptic dysfunction, neuronal cytotoxicity has been attributed to soluble Aβ42 oligomers. The 37kDa/67kDa laminin receptor has been implicated in Aβ42 shedding and Aβ42-induced neuronal cytotoxicity, as well as internalization of this neurotoxic peptide.

View Article and Find Full Text PDF

Cancer is a global burden due to high incidence and mortality rates and is ranked the second most diagnosed disease amongst non-communicable diseases in South Africa. A high expression level of the 37kDa/67kDa laminin receptor (LRP/LR) is one characteristic of cancer cells. This receptor is implicated in the pathogenesis of cancer cells by supporting tumor angiogenesis, metastasis and especially for this study, the evasion of apoptosis.

View Article and Find Full Text PDF

There is much interest currently in the design of metal compounds as drugs and various metal compounds are already in clinical use. These include gold(I) compounds such as auranofin and the anti-cancer platinum(II) complex, cisplatin. Bis-chelated gold(I) phosphine complexes have also shown great potential as anticancer agents, however, their efficacy has been limited by their high toxicity.

View Article and Find Full Text PDF

Introduction: The 37/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a multi-faceted cellular receptor. It plays a vital role in the malignancy of various cancer types where it is seen to contribute to invasion, adhesion, apoptosis evasion and angiogenesis. Furthermore, it has been found to play an important role in facilitating the processes leading to neurotoxicity in Alzheimer's disease (AD).

View Article and Find Full Text PDF

Apoptosis is induced in MCF-7 breast cancer cells following treatment with salicylic acid (20 mM), either in the presence or absence of a heat shock (42°C for 30 min). In order to study the alterations of apoptotic genes with quantitative real-time PCR (qPCR), suitable genes with unchanged expression following the treatments is required for normalizing the gene expression levels. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), Histone H2A (HIST), constitutively expressed heat shock protein 70 (HSC70) and tyrosine 3-monooxygenase/trytophan 5 monooxygenase activation protein, 14-3-3 (YWHAZ) were evaluated as appropriate reference genes.

View Article and Find Full Text PDF