Soil health is one of the key factors in determining the sustainability of global agricultural systems and the stability of natural ecosystems. Microbial decomposition activity plays an important role in soil health; and gaining spatiotemporal insights into this attribute is critical for understanding soil function as well as for managing soils to ensure agricultural supply, stem biodiversity loss, and mitigate climate change. Here, a novel in situ electronic soil decomposition sensor that relies on the degradation of a printed conductive composite trace utilizing the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as a binder is presented.
View Article and Find Full Text PDFInkjet-printed PEDOT:PSS electrodes are shown to record cutaneous electrophysiological signals such as electrocardiograms via a simple finger-to-electrode contact. The recordings are of high quality and show no deterioration over a 3 month period, paving the way for the development of the next generation of low-cost, convenient-to-use healthcare monitoring devices.
View Article and Find Full Text PDF