Insulin stimulates glucose disposal in skeletal muscle in part by increasing microvascular blood flow, and this effect is blunted during insulin resistance. We aimed to determine whether metformin treatment improves insulin-mediated glucose disposal and vascular insulin responsiveness in skeletal muscle of insulin-resistant rats. Sprague-Dawley rats were fed a normal (ND) or high-fat (HFD) diet for 4 weeks.
View Article and Find Full Text PDFMost methods of assessing flowmotion (rhythmic oscillation of blood flow through tissue) are limited to small sections of tissue and are invasive in tissues other than skin. To overcome these limitations, we adapted the contrast-enhanced ultrasound (CEUS) technique to assess microvascular flowmotion throughout a large region of tissue, in a non-invasive manner and in real time. Skeletal muscle flowmotion was assessed in anaesthetised Sprague Dawley rats, using CEUS and laser Doppler flowmetry (LDF) for comparison.
View Article and Find Full Text PDFBackground: Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown.
View Article and Find Full Text PDFInsulin resistance plays a key role in the development of type 2 diabetes. Skeletal muscle is the major storage site for glucose following a meal and as such has a key role in maintenance of blood glucose concentrations. Insulin resistance is characterised by impaired insulin-mediated glucose disposal in skeletal muscle.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2013
Insulin stimulates microvascular recruitment in skeletal muscle, and this vascular action augments muscle glucose disposal by ∼40%. The aim of the current study was to determine the contribution of local nitric oxide synthase (NOS) to the vascular actions of insulin in muscle. Hooded Wistar rats were infused with the NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME, 10 μM) retrogradely via the epigastric artery in one leg during a systemic hyperinsulinemic-euglycemic clamp (3 mU·min(-1)·kg(-1) × 60 min) or saline infusion.
View Article and Find Full Text PDFAims: Enhanced microvascular perfusion of skeletal muscle is important for nutrient exchange and contributes ∼40% insulin-mediated muscle glucose disposal. High fat-fed (36% fat wt./wt.
View Article and Find Full Text PDFObjective: To investigate the effects of activation of the AMP-activated protein kinase (AMPK) on muscle perfusion and to elucidate the mechanisms involved.
Methods And Results: In a combined approach, we studied the vasoactive actions of AMPK activator by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) on rat cremaster muscle resistance arteries ( approximately 100 mum) ex vivo and on microvascular perfusion in the rat hindlimb in vivo. In isolated resistance arteries, AICAR increased Thr172 phosphorylation of AMPK in arteriolar endothelium, which was predominantly located in microvascular endothelium.
Insulin increases capillary recruitment in vivo and impairment of this may contribute to muscle insulin resistance by limiting either insulin or glucose delivery. In the present study, the effect of progressively decreased rat muscle perfusion on insulin action using graded occlusion with MS (microspheres; 15 mum in diameter) was examined. EC (energy charge), PCr/Cr (phosphocreatine/creatine ratio), AMPK (AMP-activated protein kinase) phosphorylation on Thr(172) (P-AMPKalpha/total AMPK), oxygen uptake, nutritive capacity, 2-deoxyglucose uptake, Akt phosphorylation on Ser(473) (P-Akt/total Akt) and muscle 2-deoxyglucose uptake were determined.
View Article and Find Full Text PDFThe evidence that muscle metabolism is determined by available capillary surface area is examined. From newly developed methods it is clear that exercise and insulin mediate capillary recruitment as part of their actions in vivo. In all insulin-resistant states examined thus far, insulin-mediated capillary recruitment is impaired with little or no change to the exercise response.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2007
Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, was systemically infused during a hyperinsulinemic euglycemic clamp to investigate its effects in vivo. Rats were infused under anesthesia with saline, 10 or 20 mU.min-1.
View Article and Find Full Text PDF