Penetration capacity is a central root phenotype for enhancing rooting into compacted soils and improving abiotic stress tolerance in crop plants, but the molecular mechanisms are unclear. In this issue of Developmental Cell, Xu et al. demonstrate the vital role of the FER-PIF3-PIEZO circuitry in controlling primary root penetrability into compacted substrates.
View Article and Find Full Text PDFBackground: Survival rate (SR) is frequently used to compare drought tolerance among plant genotypes. While a variety of techniques for evaluating the stress status of plants under drought stress conditions have been developed, determining the critical point for the recovery irrigation to evaluate plant SR often relies directly on a qualitative inspection by the researcher or on the employment of complex and invasive techniques that invalidate the subsequent use of the tested individuals.
Results: Here, we present a simple, instantaneous, and non-invasive method to estimate the survival probability of Arabidopsis thaliana plants after severe drought treatments.
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields.
View Article and Find Full Text PDFSoil mechanical impedance precludes root penetration, confining root system development to shallow soil horizons where mobile nutrients are scarce. Using a two-phase-agar system, we characterized Arabidopsis responses to low and high mechanical impedance at three root penetration stages. We found that seedlings whose roots fail to penetrate agar barriers show a significant reduction in leaf area, root length, and elongation zone and an increment in root diameter, while those capable of penetrating show only minor morphological effects.
View Article and Find Full Text PDFPlant root systems play a fundamental role in nutrient and water acquisition. In resource-limited soils, modification of root system architecture is an important strategy to optimize plant performance. Most terrestrial plants also form symbiotic associations with arbuscular mycorrhizal fungi to maximize nutrient uptake.
View Article and Find Full Text PDFAchieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.
View Article and Find Full Text PDF