Background: Site-specific weed management (SSWM) demands higher resolution data for mapping weeds in fields, but the success of this tool relies on the efficiency of optical sensors to discriminate weeds relative to other targets (soils and residues) before cash crop establishment. The objectives of this study were to (i) evaluate the accuracy of spectral bands to differentiate weeds (target) and other non-targets, (ii) access vegetation indices (VIs) to assist in the discrimination process, and (iii) evaluate the accuracy of the thresholds to distinguish weeds relative to non-targets for each VI using training and validation data sets.
Results: The main outcomes of this study for effectively distinguishing weeds from other non-targets are (i) training and validation data exhibited similar spectral curves, (ii) red and near-infrared spectral bands presented greater accuracy relative to the other bands, and (iii) the tested VIs increased the discrimination accuracy related to single bands, with an overall accuracy above 95% and a kappa above 0.