Introduction: Advanced cutaneous melanoma is a skin cancer characterized by a poor prognosis and high metastatic potential. During metastatic spread, melanoma cells often undergo dedifferentiation toward an invasive phenotype, resulting in reduced expression of microphthalmia-associated transcription factor (MITF)-dependent melanoma antigens and facilitating immune escape. Tumor Necrosis Factor (TNF) is known to be a key factor in melanoma dedifferentiation.
View Article and Find Full Text PDFMelanoma is the deadliest form of skin cancer due to its propensity to metastasize. It arises from melanocytes, which are attached to keratinocytes within the basal epidermis. Here, we hypothesize that, in addition to melanocyte-intrinsic modifications, dysregulation of keratinocyte functions could initiate early-stage melanoma cell invasion.
View Article and Find Full Text PDFVascular smooth muscle cells (VSMCs) are one of the main cellular determinants in arterial pathology. A large body of evidence indicates that death of VSMCs is associated with features of high-risk/vulnerable atherosclerotic plaques. Mitochondrial turnover is an essential aspect of the mitochondrial quality control in which dysfunctional mitochondria are selectively eliminated through autophagy and replaced through expansion of preexisting mitochondria.
View Article and Find Full Text PDFThe data presented in this article are related to the research article entitled "Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification." (Gonzalez et al., 2018) [1].
View Article and Find Full Text PDFGlutathione transferases (GSTs) are ubiquitous key enzymes that catalyse the conjugation of glutathione to xenobiotic compounds in the detoxification process. GSTs have been proposed to play a dual role in the signal termination of insect chemodetection by modifying odorant and tasting molecules and by protecting the chemosensory system. Among the 40 GSTs identified in Drosophila melanogaster, the Delta and Epsilon groups are insect-specific.
View Article and Find Full Text PDFMitophagy is a critical cellular process that selectively targets damaged mitochondria for autophagosomal degradation both under baseline conditions and in response to stress preventing oxidative damage and cell death. Recent studies have linked alterations in mitochondria function and reduced autophagy with the development of age-related pathologies. However, the significance of mitochondrial autophagy in vessel wall in response to atherogenic lipid stressors is not known.
View Article and Find Full Text PDFThe neutral type 2 sphingomyelinase (nSMase2) hydrolyzes sphingomyelin and generates ceramide, a major bioactive sphingolipid mediator, involved in growth arrest and apoptosis. The role of nSMase2 in apoptosis is debated, and apparently contradictory results have been observed on fibroblasts isolated from nSMase2-deficient fragilitas ossium (homozygous fro/fro) mice. These mice exhibit a severe neonatal dysplasia, a lack of long bone mineralization and delayed apoptosis patterns of hypertrophic chondrocytes in the growth plate.
View Article and Find Full Text PDFBackground And Purpose: Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known.
View Article and Find Full Text PDFElastin is a long-lived protein and a key component of connective tissues. The tissular elastin content decreases during chronological aging, and the mechanisms underlying its slow repair are not known. Lipid oxidation products that accumulate in aged tissues may generate protein dysfunction.
View Article and Find Full Text PDFAims: Protein disulfide isomerase (PDI) is an abundant endoplasmic reticulum (ER)-resident chaperone and oxidoreductase that catalyzes formation and rearrangement (isomerization) of disulfide bonds, thereby participating in protein folding. PDI modification by nitrosative stress is known to increase protein misfolding, ER stress, and neuronal apoptosis. As LDL oxidation and ER stress may play a role in atherogenesis, this work was designed to investigate whether PDI was inactivated by oxLDLs, thereby participating in oxLDL-induced ER stress and apoptosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Serotonin (5-HT) participates in the development of cardiac hypertrophy through 5-HT(2A) serotonin receptors. The hypertrophic growth of cardiomyoblasts induced by 5-HT(2A) receptors involves the activation of the Ca(2+) responsive calcineurin/NFAT pathway. However, the mechanism whereby NFAT is activated by 5-HT(2A) receptors remains indeterminate.
View Article and Find Full Text PDFPlasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known.
View Article and Find Full Text PDFBackground: Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation.
View Article and Find Full Text PDFWe report the surface-mediated polymerization of FtsZ protein, the prokaryote homologue of tubulin, by AFM. FtsZ protein can form filaments on mica whereas the bulk FtsZ concentration is orders of magnitude lower than the critical concentration. Surface polymerization is favored by a local increase in protein concentration and requires a high mobility of proteins on the surface.
View Article and Find Full Text PDFWe suggest for the first time that the action of multivalent cations on microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the microtubule ends. Facilitated diffusion can promote microtubule assembly, because, upon encountering a growing nucleus or the microtubule wall, random GTP-tubulin sliding on their surfaces will increase the probability of association to the target sites (nucleation sites or MT ends). This is an original explanation for understanding the apparent discrepancy between the high rate of microtubule elongation and the low rate of tubulin association at the microtubule ends in the viscous cytoplasm.
View Article and Find Full Text PDF