Publications by authors named "Elodie Maille"

Rapid and accurate diagnosis of SARS-CoV-2 infection is essential for the management of the COVID-19 outbreak. RT-LAMP LoopDeetect COVID-19 (LoopDeescience, France) is a rapid molecular diagnostic tool which operates with the LoopDeelab (LoopDeescience, France) device. RAPID COVID is a prospective double-blind research protocol which was conducted to evaluate the concordance between Loopdeetect COVID-19 and RT-PCR Allplex 2019 n-Cov (Seegene, Korea).

View Article and Find Full Text PDF

Malignant pleural mesothelioma is a rare and aggressive neoplasm, which has primarily been attributed to the exposure to asbestos fibers (83% of cases); yet, despite a ban of using asbestos in many countries, the incidence of malignant pleural mesothelioma failed to decline worldwide. While little progress has been made in malignant pleural mesothelioma diagnosis, bevacizumab at first, then followed by double immunotherapy (nivolumab plus ipilumumab), were all shown to improve survival in large phase III randomized trials. The morphological analysis of the histological subtyping remains the primary indicator for therapeutic decision making at an advanced disease stage, while a platinum-based chemotherapy regimen combined with pemetrexed, either with or without bevacizumab, is still the main treatment option.

View Article and Find Full Text PDF

The Hippo pathway effector YAP is dysregulated in malignant pleural mesothelioma (MPM). YAP's target genes include the secreted growth factor amphiregulin (AREG), which is overexpressed in a wide range of epithelial cancers and plays an elusive role in MPM. We assayed the expression of YAP and AREG in MPM pathology samples and that of AREG additionally in plasma samples of patients from the randomized phase 3 IFCT-0701 Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS) using immunohistochemistry and ELISA assays, respectively.

View Article and Find Full Text PDF

gene methylation predicts longer disease-free survival (DFS) and overall survival (OS) in patients with early-stage non-small-cell lung cancer treated using paclitaxel-based neo-adjuvant chemotherapy compared to patients receiving a gemcitabine-based regimen, according to the randomized Phase 3 IFCT (Intergroupe Francophone de Cancérologie Thoracique)-0002 trial. To better understand these results, this study used four human bronchial epithelial cell (HBEC) models (HBEC-3, HBEC-3-RasV12, A549, and H1299) and modulated the expression of RASSF1A or YAP-1. Wound-healing, invasion, proliferation and apoptosis assays were then carried out and the expression of YAP-1 transcriptional targets was quantified using a quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Background: RASSF1A, a tumor suppressor gene, is frequently inactivated in lung cancer leading to a YAP-dependent epithelial-mesenchymal transition (EMT). Such effects are partly due to the inactivation of the anti-migratory RhoB GTPase via the inhibitory phosphorylation of GEF-H1, the GDP/GTP exchange factor for RhoB. However, the kinase responsible for RhoB/GEF-H1 inactivation in RASSF1A-depleted cells remained unknown.

View Article and Find Full Text PDF

Background: The Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS/NCT00651456) phase 3 trial demonstrated the superiority of bevacizumab plus pemetrexed-cisplatin triplet over chemotherapy alone in 448 malignant pleural mesothelioma (MPM) patients. Here, we evaluated the prognostic role of Hippo pathway gene promoter methylation.

Methods: Promoter methylations were assayed using methylation-specific polymerase chain reaction in samples from 223 MAPS patients, evaluating their prognostic value for overall survival (OS) and disease-free survival in univariate and multivariate analyses.

View Article and Find Full Text PDF

Background: By allowing intercellular communication between cells, tunneling nanotubes (TNTs) could play critical role in cancer progression. If TNT formation is known to require cytoskeleton remodeling, key mechanism controlling their formation remains poorly understood.

Methods: The cells of human bronchial (HBEC-3, A549) or mesothelial (H2452, H28) lines are transfected with different siRNAs (inactive, anti-RASSF1A, anti-GEFH1 and / or anti-Rab11).

View Article and Find Full Text PDF