Publications by authors named "Elodie Josset"

Cell culture is an important tool for biological research. Two-dimensional cell culture has been used for some time now, but growing cells in flat layers on plastic surfaces does not accurately model the in vivo state. As compared to the two-dimensional case, the three-dimensional (3D) cell culture allows biological cells to grow or interact with their surroundings in all three dimensions thanks to an artificial environment.

View Article and Find Full Text PDF

The present in vitro study aimed to assess the effects of combining the mTOR inhibitor RAD001 and temozolomide (TMZ) together with irradiation by either low-linear energy transfer (LET) radiation (γ-rays) or high-LET radiation (fast neutrons) on the growth and cell survival of the human glioblastoma cell line U-87. We observed a strong decrease in cell proliferation along with a concomitant increase in cell death as a function of the radiation dose. As expected, high-LET radiation was more effective and induced more sustained damage to DNA than low-LET radiation.

View Article and Find Full Text PDF

We have studied the consequences of the combination of the mammalian target of rapamycin (mTOR) inhibitor RAD001 and temozolomide on the growth and cell death of the glioblastoma cell line U-87 in vitro. A progressive decrease of cell proliferation was recorded with increasing concentrations of temozolomide, which was markedly reinforced and prolonged by the addition of RAD001. While this combination treatment resulted in only a low level of apoptosis, it led to a pronounced enhancement of autophagic cell death.

View Article and Find Full Text PDF

Treatment of hepatocellular carcinoma (HCC) is a major concern for physicians as its response to chemotherapy and radiotherapy remains generally poor, due, in part, to intrinsic resistance to either form of treatment. We previously reported that an irradiation with fast neutrons, which are high-linear energy transfer (LET) particles, massively induced autophagic cell death in the human HCC SK-Hep1 cell line. In the present study, we tested the capacity of the mammalian target of rapamycin (mTOR) inhibitor RAD001 to augment the cytotoxicity of low and high-LET radiation in these cells.

View Article and Find Full Text PDF

Introduction: Autophagy is an intracellular process of self-digestion involving the lysosomal degradation of cytoplasmic organelles and macromolecules. It occurs at low basal levels to perform housekeeping functions and is dramatically augmented upon nutrient depletion or exposure to other stresses, thus maintaining cellular homeostasis and energy balance and providing cytoprotective responses to adverse conditions. Mounting evidence that autophagy malfunction contributes to the pathogenesis of diverse human diseases has stimulated efforts to identify pharmacological agents that modulate autophagy in potentially beneficial ways.

View Article and Find Full Text PDF