Publications by authors named "Elodie Desuzinges-Mandon"

The α7 nicotinic acetylcholine receptor participates in diverse aspects of brain physiology and disease. Neurons tightly control α7 assembly, which relies upon NACHO, an endoplasmic reticulum (ER)-localized integral membrane protein. By constructing α7 chimeras and mutants, we find that NACHO requires the α7 ectodomain to promote receptor assembly and surface trafficking.

View Article and Find Full Text PDF

During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown.

View Article and Find Full Text PDF

Influenza A viruses cause major morbidity and represent a severe global health problem. Current influenza vaccines are mainly egg-based products requiring the split of whole viruses using classical detergents such as Triton X-100, which implies certain limitations. Here, we report the use of the novel calixarene-based surfactant CALX133ACE as an alternative to classical detergents for influenza inactivated split vaccine preparation.

View Article and Find Full Text PDF

CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells.

View Article and Find Full Text PDF

Membrane proteins (MP) are stable in their native lipid environment. To enable structural and functional investigations, MP need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology.

View Article and Find Full Text PDF

Membrane proteins play crucial role in many cellular processes including cell adhesion, cell-cell communication, signal transduction and transport. To better understand the molecular basis of such central biological machines and in order to specifically study their biological and medical role, it is necessary to extract them from their membrane environment. To do so, it is challenging to find the best solubilization condition.

View Article and Find Full Text PDF

Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions.

View Article and Find Full Text PDF

Background: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation.

Methodology/principal Findings: Anionic calix[4]arene based detergents (C4Cn, n=1-12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins.

View Article and Find Full Text PDF

ABCG2 is an ATP-binding cassette (ABC) transporter preferentially expressed by immature human hematopoietic progenitors. Due to its role in drug resistance, its expression has been correlated with a protection role against protoporhyrin IX (PPIX) accumulation in stem cells under hypoxic conditions. We show here that zinc mesoporphyrin, a validated fluorescent heme analog, is transported by ABCG2.

View Article and Find Full Text PDF